4089634 D.C. Mechanical Code Supplement of 2013  

  • DEPARTMENT OF CONSUMER AND REGULATORY AFFAIRS
    CONSTRUCTION CODES COORDINATING BOARD

     

    NOTICE OF PROPOSED RULEMAKING

     

    The Chairperson of the Construction Codes Coordinating Board (Chairperson), pursuant to the authority set forth in section 10 of the Construction Codes Approval and Amendments Act of 1986 (Act), effective March 21, 1987 (D.C. Law 6-216; D.C. Official Code § 6-1409 (2008 Repl.)) and Mayor’s Order 2009-22, dated February 25, 2009, as amended, hereby gives notice of the intent to adopt the following amendments to Title 12 (D.C. Construction Codes Supplement of 2008) of the District of Columbia Municipal Regulations, as well as to rename Title 12.

     

    This proposed rulemaking would adopt the following codes published by the International Code Council (ICC), as amended by this rulemaking in a new District of Columbia Construction Codes Supplement of 2013, as the District of Columbia Construction Codes: the 2012 edition of the International Building Code; the 2012 edition of the International Residential Code; the 2012 edition of the International Fuel Gas Code; the 2012 edition of the International Mechanical Code; the 2012 edition of the International Plumbing Code; the 2012 edition of the International Property Maintenance Code; the 2012 edition of the International Fire Code; the 2012 edition of the  International Energy Conservation Code; the 2012 edition of the International Existing Building Code; the 2012 edition of the International Green Construction Code; the 2012 edition of the International Swimming Pool and Spa Code; and the 2011 edition of the National Electrical Code (NFPA 70) published by the National Fire Protection Association.

     

    This proposed rulemaking would repeal the D.C. Construction Codes Supplement of 2008, adopted December 26, 2008 (55 DCR 13094), consisting of the following: the 2006 edition of the ICC International Building Code; the 2006 edition of the ICC International Residential Code; the 2006 edition of the ICC International Fuel Gas Code; the 2006 edition of the ICC International Mechanical Code; the 2006 edition of the ICC International Plumbing Code; the 2006 edition of the ICC International Property Maintenance Code; the 2006 edition of the ICC International Fire Code; the 2006 edition of the ICC International Energy Conservation Code; the 2006 edition of the ICC International Existing Building Code; and the 2005 edition of the National Fire Protection Association (NFPA 70) National Electrical Code.

     

    Comments on this proposed rulemaking must be submitted by 5 p.m. on Friday, January 25, 2013. The process for submitting comments is detailed on the final page of this proposed rulemaking.

     

    The Chairperson also hereby gives notice of the intent to take final rulemaking action to adopt this amendment.  Pursuant to section 10(a) of the Act, the proposed amendment will be submitted to the Council of the District of Columbia for a forty-five (45) day period of review, and final rulemaking action will not be taken until the later of thirty (30) days after the date of publication of this notice in the D.C. Register or Council approval of the amendment.

     

    Title 12 (D.C. Construction Codes Supplement of 2008) of the District of Columbia Municipal Regulations is amended as follows:

     

    The title of title 12 is renamed as the District of Columbia Construction Codes Supplement of 2013.

     

    Subtitle 12 A (Building Code Supplement of 2008) is repealed in its entirety and replaced with a new Building Code Supplement of 2013.

     

    Subtitle 12 B (Residential Code Supplement of 2008) is repealed in its entirety and replaced with a new Residential Code Supplement of 2013.

     

    Subtitle 12 C (Electrical Code Supplement of 2008) is repealed in its entirety and replaced with a new Electrical Code Supplement of 2013.

     

    Subtitle 12 D (Fuel Gas Code Supplement of 2008) is repealed in its entirety and replaced with a new Fuel Gas Code Supplement of 2013.

     

    Subtitle 12 E (Mechanical Code Supplement of 2008) is repealed in its entirety and replaced with a new Mechanical Code Supplement of 2013.

     

    Subtitle 12 F (Plumbing Code Supplement of 2008) is repealed in its entirety and replaced with a new Plumbing Code Supplement of 2013.

     

    Subtitle 12 G (Property Maintenance Code Supplement of 2008) is repealed in its entirety and replaced with a new Property Maintenance Code Supplement of 2013.

     

    Subtitle 12 H (Fire Code Supplement of 2008) is repealed in its entirety and replaced with a new Fire Code Supplement of 2013.

     

    Subtitle 12 I (Energy Conservation Code Supplement of 2008) is repealed in its entirety and replaced with a new Energy Conservation Code Supplement of 2013.

     

    Subtitle 12 J (Existing Building Supplement of 2008) is repealed in its entirety and replaced with a new Existing Building Code Supplement of 2013.

     

    Subtitle 12 K (Fees) is redesignated as Subtitle M (Fees).

     

    A new Subtitle 12 K (Green Construction Code Supplement of 2013) is added.

     

    A new Subtitle 12 L (Swimming Pool and Spa Code Supplement of 2013) is added.

     

    For purposes of clarity, the following table lists each chapter of the ICC and NFPA 70 codes amended by the District of Columbia Construction Codes Supplement of 2013:

     

    Subtitle A – Building Code Supplement

     

    Chapter 1        Administration and Enforcement

    Chapter 2        Definitions

    Chapter 3        Use Group and Classification

    Chapter 4        Special Detailed Requirements Based on Use and Occupancy

    Chapter 5        General Building Heights and Areas

    Chapter 7        Fire-Resistance-Related Construction

    Chapter 9        Fire Protection Systems

    Chapter 10      Means of Egress

    Chapter 12      Interior Environment

    Chapter 14      Exterior Walls

    Chapter 15      Roof Assemblies and Rooftop Structures

    Chapter 16      Structural Design

    Chapter 18      Soils and Foundations

    Chapter 26      Plastic

    Chapter 30      Elevators and Conveying Systems

    Chapter 31      Special Construction

    Chapter 32      Encroachments into the Public Right-of-Way

    Chapter 33      Safeguards During Construction

    Chapter 34      Existing Structures

    Chapter 35      Referenced Standards

    Appendix E     Supplementary Accessibility Requirements

     

    Subtitle B – Residential Code Supplement

     

    Chapter 1        Scope and Administration

    Chapter 2        Definitions

    Chapter 3        Building Planning

    Chapter 9        Roof Assemblies

    Chapter 11      Energy Efficiency

    Chapter 12      Mechanical Administration

    Chapter 15      Exhaust Systems

    Chapter 16      Duct Systems

    Chapter 24      Fuel Gas

    Chapter 25      Plumbing Administration

    Chapter 29      Water Supply and Distribution

    Chapter 30      Sanitary Drainage

    Chapter 44      Referenced Standards

    Appendix H    Patio Covers

    Appendix J      Existing Buildings and Structures

    Appendix K    Sound Transmission

    Appendix M    Home Day Care – R-3 Occupancies

     

    Subtitle C – Electrical Code Supplement

     

    Article 90        Introduction

    Article 408      Switchboards and Panelboards

     

    Subtitle D – Fuel Gas Code Supplement

     

    Chapter 1        Scope and Administration

    Chapter 2        Definitions

    Chapter 5        Chimneys and Vents

    Chapter 8        Referenced Standards

     

    Subtitle E – Mechanical Code Supplement

     

    Chapter 1        Scope and Administration

    Chapter 2        Definitions

    Chapter 4        Ventilation

    Chapter 5        Exhaust Systems

    Chapter 6        Duct Systems

    Chapter 8        Chimneys and Vents

    Chapter 9        Specific Appliances, Fireplaces and Solid Fuel-Burning Equipment

    Chapter 10      Boilers, Water Heaters and Pressure Vessels

    Chapter 11      Refrigeration

    Chapter 15      Referenced Standards

     

    Subtitle F – Plumbing Code Supplement

     

    Chapter 1        Scope and Administration

    Chapter 3        General Regulations

    Chapter 4        Fixtures, Faucets and Fixture Fittings

    Chapter 6        Water Supply and Distribution

    Chapter 8        Indirect/Special Waste

    Chapter 11      Storm Drainage

    Chapter 13      Nonliquid Saturated Treatment Systems

     

    Subtitle G – Property Maintenance Code Supplement

     

    Chapter 1        Administration and Enforcement

    Chapter 2        Definitions

    Chapter 3        Requirements

    Chapter 4        Light, Ventilation and Occupancy Limitations

    Chapter 5        Plumbing Facilities and Fixture Requirements

    Chapter 6        Mechanical and Electrical Requirements

    Chapter 7        Fire Safety Requirements

    Chapter 8        Referenced Standards

     

    Subtitle H – Fire Code Supplement

     

    Chapter 1        Administration and Enforcement

    Chapter 2        Definitions

    Chapter 3        General Requirements

    Chapter 5        Fire Service Features

    Chapter 6        Building Services and Systems

    Chapter 9        Fire Protection Systems

    Chapter 10      Means of Egress

    Chapter 11      Construction Requirements for Existing Buildings

    Chapter 56      Explosives and Fireworks

    Appendix B    Fire-Flow Requirements for Buildings

    Appendix C    Fire Hydrant Locations and Distribution

    Appendix D    Fire Apparatus Access Roads

    Appendix H    Hazardous Materials Management Plan (HMMP) and Hazardous Materials Inventory Statement (HMIS) Instructions

     

    Subtitle I – Energy Conservation Code Supplement

     

    Chapter 1[CE] Administration

    Chapter 4[CE] Commercial Energy Efficiency

    Chapter 1[RE] Scope and Administration

     

    Subtitle J – Existing Building Code Supplement

     

    Chapter 1        Scope and Administration

    Chapter 2        Definitions

    Chapter 4        Prescriptive Compliance Method

    Chapter 6        Repairs

    Chapter 7        Alterations-Level 1

    Chapter 8        Alterations-Level 2

    Chapter 9        Alterations-Level 3

    Chapter 10      Change of Occupancy

    Chapter 15      Construction Safeguards

     

    Subtitle K – Green Construction Code

     

    Chapter 1        Scope and Administration

    Chapter 2        Definitions

    Chapter 3        Green Building Act and ASHRAE 189.1

    Chapter 4        Site Development and Land Use

    Chapter 5        Material Resource Conservation and Efficiency

    Chapter 6        Energy Conservation, Efficiency, and CO2e  

    Chapter 7        Water Resource Conservation, Quality and Efficiency

    Chapter 8        Indoor Environmental Quality and Comfort

    Chapter 9        Commissioning

    Chapter 10      Existing Buildings

    Chapter 11      Existing Building Site Development

    Chapter 12      Referenced Standards

    Appendix A    Project Electives

     

    Subtitle L – Swimming Pool and Spa Code Supplement

     

    Chapter 1        Scope and Administration

    Chapter 2        Definitions


    DISTRICT OF COLUMBIA

    CONSTRUCTION CODES SUPPLEMENT OF 2013

    12 DCMR E MECHANICAL CODE SUPPLEMENT

     

     

    The District of Columbia has adopted the 2012 edition of the International Mechanical Code (IMC), as amended by this Supplement.

     

    IMC CHAPTERS AMENDED BY THIS SUPPLEMENT:

     

    CHAPTER 1         SCOPE AND ADMINISTRATION

    CHAPTER 2         DEFINITIONS

    CHAPTER 4         VENTILATION

    CHAPTER 5         EXHAUST SYSTEMS

    CHAPTER 6         DUCT SYSTEMS

    CHAPTER 8         CHIMNEYS AND VENTS

    CHAPTER 9         SPECIFIC APPLIANCES, FIREPLACES AND SOLID
    FUEL-BURNING EQUIPMENT

    CHAPTER 10       BOILERS, WATER HEATERS AND PRESSURE VESSELS

    CHAPTER 11       REFRIGERATION

    CHAPTER 15       REFERENCED STANDARDS

     


    Strike Chapter 1 of the International Mechanical Code in its entirety and insert new Chapter 1 in the Mechanical Code in its place to read as follows:

     

    CHAPTER 1             SCOPE AND ADMINISTRATION

     

    101      General

     

     

    101      GENERAL

     

    101.1 General.  Administration and enforcement of the Mechanical Code shall be governed by Chapter 1 of the Building Code, 12 DCMR A.

     


    CHAPTER 2             DEFINITIONS

     

    202      General Definitions

     

     

    202      GENERAL DEFINITIONS

     

    Insert new definitions in Section 202 of the Mechanical Code to read as follows:

     

    ASME CODE.  The Boiler and Pressure Vessel Code (ASME BPVC) published by the American Society of Mechanical Engineers as referenced in Chapter 15, Referenced Standards.

     

    BOILER, HEATING.  A steam or vapor boiler operating at pressures not exceeding 15 psig (103 kPa), or a hot water boiler operating at pressures not exceeding 160 psig (1103 kPa) and temperatures not exceeding 250 °F (121 °C).

     

    BOILER, HOT WATER HEATING.  A boiler in which no steam is generated, from which hot water is circulated for heating purposes and then returned to the boiler, and which is operated at a pressure not exceeding 160 psig (1103 kPa) and a temperature not exceeding 250 °F (121 °C) at or near the boiler outlet.

     

    BOILER, HOT WATER SUPPLY.  A boiler completely filled with water that furnishes hot water to be used externally to itself at pressures not exceeding 160 psig (1103 kPa) and a temperature not exceeding 250 °F (121 °C) at or near the boiler outlet.

     

    BOILER, MINIATURE.  A power or high-temperature water boiler which does not exceed the following limits: 16 inches (406 mm) inside diameter of shell; 20 square feet (1.86 m2) of heating surface (not applicable to electric boilers); 5 cubic feet (0.142 m3) of gross volume exclusive of casing and insulation; and 100 psig (690 kPa) maximum allowable working pressure.

     

    BOILER, PORTABLE.  A boiler that is primarily intended for temporary location, where its construction and usage permits it to be readily moved from one location to another.

     

    BOILER, POWER.  A boiler in which steam or other vapor is generated at a pressure of more than 15 psig (103 kPa).

     

    BOILER, UNFIRED STEAM.  An unfired pressure vessel or system of unfired pressure vessels intended for operation at a pressure in excess of 15 psig (103 kPa) steam for the purpose of producing and controlling an output of thermal energy.

     

    CERTIFICATE OF COMPETENCY.  A certificate issued by the code official to a person who meets the qualifications for an insurance company inspector set forth in the Mechanical Code.

     

    CERTIFICATE OF INSPECTION (For Chapter 10).  A certificate issued for operation of a boiler or pressure vessel as required in the Mechanical Code.

     

    EXISTING BOILER OR PRESSURE VESSEL INSTALLATION.  A boiler or pressure vessel constructed, installed, placed in operation, or contracted for on or before the effective date of the Construction Codes.

     

    EXTERNAL INSPECTION.  An inspection made when a boiler or pressure vessel is in operation.

     

    INSURANCE COMPANY INSPECTOR. A person employed or retained by a District of Columbia-licensed insurance company who holds a valid certificate of competency.

     

    INTERNAL INSPECTION.  An inspection that can reasonably be conducted on the internal and external surfaces of a boiler or pressure vessel while it is shut down and the manhole plates, handhole plates, or other inspection opening closures are removed.

     

    NATIONAL BOARD.  The National Board of Boiler and Pressure Vessel Inspectors.

     

    NEW BOILER OR PRESSURE VESSEL INSTALLATION.  A boiler or pressure vessel constructed, installed, placed in operation or contracted for after the effective date of the Construction Codes.

     

    NONSTANDARD BOILER OR PRESSURE VESSEL.  A boiler or pressure vessel that does not bear the ASME Code symbol stamp, the API-ASME Code symbol stamp or the stamp of any jurisdiction that has adopted a standard of construction deemed by the code official to be equivalent to the Mechanical Code.

     

    OWNER OR USER (For Chapter 10).  Any person, including firms or corporations, legally responsible for the safe installation, operation and maintenance of any boiler or pressure vessel within the District of Columbia.

     

    POTABLE HOT WATER HEATER.  A heater supplying potable water for commercial purposes in which the pressure does not exceed 160 psig (1103 kPa) and the temperature does not exceed 210 °F (99 °C).

     

    STANDARD BOILER OR PRESSURE VESSEL.  A boiler or pressure vessel which bears the ASME Code symbol stamp, the API-ASME Code symbol stamp, both the ASME and the National Board stamps or the stamp of another jurisdiction that has adopted a standard of construction deemed by the code official to be equivalent to the Mechanical Code.

     

    Strike the definition of Smoke-Developed Index from Section 202 of the International Mechanical Code in its entirety and insert new definition of Smoke-Developed Index in Section 202 of the Mechanical Code in its place to read as follows:

     

    SMOKE-DEVELOPED INDEX.  A comparative measure, expressed as a dimensionless number, derived from measurements of smoke obscuration versus time for a material tested in accordance with ASTM E 84 or UL 723

     

    Strike the definition of Third Party Certified in Section 202 of the International Mechanical Code in its entirety and insert new definition of Third Party Certified in Section 202 of the Mechanical Code in its place to read as follows:

     

    THIRD PARTY CERTIFIED.  Product or material for which a certification was obtained by the manufacturer indicating that the function and performance characteristics of such product or material have been determined by testing and ongoing surveillance by an approved third-party certification agency.  Assertion of certification is in the form of identification in accordance with the requirements of the third-party certification agency.

     

    Strike the definition of Third Party Tested in Section 202 of the International Mechanical Code in its entirety and insert new definition of Third Party Tested in Section 202 of the Mechanical Code in its place to read as follows:

     

    THIRD PARTY TESTED.  Product, material or system that has undergone successfully a procedure by which an approved testing laboratory provides documentation that such product, material or system conforms to specified requirements.

     


    CHAPTER 4             VENTILATION

     

    401      General

     

     

    401      GENERAL

     

    Strike Section 401.2 of the International Mechanical Code in its entirety and insert new Section 401.2 in the Mechanical Code in its place to read as follows:

     

    401.2 Ventilation required.  Every occupied space shall be ventilated by natural means in accordance with Section 402 or by mechanical means in accordance with Section 403. 


    CHAPTER 5             EXHAUST SYSTEMS

     

    501            General

    506      Commercial Kitchen Hood Ventilation System Ducts and Exhaust Equipment

    515      Laboratory Ventilating Systems

     

     

    501      GENERAL

     

    Insert new Section 501.3.1.2 in the Mechanical Code to read as follows:

     

    501.3.1.2 Garage exhaust termination.  Exhaust air from garage exhaust systems or outlets shall not be directed onto walkways.  The termination point of private parking garage mechanical exhaust systems and outlets shall comply with the requirements for environmental air exhaust in Section 501.3.1, item 3, of the Mechanical Code.  The termination point of public parking garage mechanical exhaust systems and outlets shall be located not less than 20 feet (6096 mm) from doors, operable windows and air intake openings into any building.  The bottom of exhaust openings serving public garages shall be located not less than 15 feet (4572 mm) above streets, alleys and other walkways.

     

    Exception:  When exhaust air is directed upwards, the code official is authorized to approve garage exhaust openings less than 15 feet (4572 mm) above streets, alleys and other walkways.

     

    506      COMMERCIAL KITCHEN HOOD VENTILATION SYSTEM DUCTS AND EXHAUST EQUIPMENT

     

    Strike Section 506.3.11 of the International Mechanical Code in its entirety and insert new Section 506.3.11 in the Mechanical Code in its place to read as follows:

     

    506.3.11 Grease duct enclosures.  A grease duct serving a Type I hood that penetrates a ceiling, wall, floor or any concealed spaces shall be enclosed from the point of penetration to the outlet terminal.  A duct shall penetrate exterior walls only at locations where unprotected openings are permitted by the Building Code.  The duct enclosure shall serve a single grease duct and shall not contain other ducts, piping or wiring systems.  Duct enclosures shall have a fire-resistance rating of not less than that of the assembly penetrated and not less than 1 hour.  Duct enclosures shall be as prescribed by Section 506.3.11.1, 506.3.11.2 or 506.3.11.3.

     

    Strike Section 506.3.13.3 of the International Mechanical Code in its entirety and insert new Section 506.3.13.3 in the Mechanical Code in its place to read as follows:

     

    506.3.13.3 Termination location.  Exhaust outlets shall be located not less than 10 feet (3048 mm) horizontally from parts of the same or contiguous buildings, adjacent buildings and adjacent property lines and shall be located not less than 15 feet (4572 mm) above the adjoining grade level.  Exhaust outlets shall be located not less than 20 feet (6096 mm) horizontally from or not less than 5 feet (1524 mm) above doors, operable windows and air intake openings into any building.

     

    Exceptions:

     

    1.            Exhaust outlets shall terminate not less than 5 feet (1524 mm) horizontally from parts of the same or contiguous building, an adjacent building and adjacent property line where air from the exhaust outlet discharges away from such locations.

     

    2.            On narrow lots where a 20 foot distance from doors, operable windows and air intake openings into any building cannot be achieved, the code official is authorized to approve a smaller distance.

     

    When an approved odor and grease removal system is installed, termination is permitted in accordance with the requirements of Section 501.3.1(2) of the Mechanical Code, provided termination is not less than 15 feet (4572 mm) above the adjoining grade level.

     

    Insert new Section 515 in the Mechanical Code to read as follows:

     

    515      LABORATORY VENTILATING SYSTEMS

     

    515.1 Laboratory hoods.  Laboratory hoods and laboratory ventilating systems shall be designed and installed in accordance with NFPA 45.


    CHAPTER 6             DUCT SYSTEMS

     

    607     Duct and Transfer Openings

     

     

    607      DUCT AND TRANSFER OPENINGS

     

    Strike Section 607.5.5 of the International Mechanical Code in its entirety and insert new Section 607.5.5 in the Mechanical Code in its place to read as follows:

     

    607.5.5 Shaft enclosures.  Shaft enclosures that are permitted to be penetrated by ducts and air transfer openings shall be protected with listed fire and smoke dampers installed in accordance with their listing.

     

    Exceptions:

     

    1.      Fire and smoke dampers are not required at penetrations of exhaust shafts where steel exhaust subducts extend at least 22 inches (559 mm) vertically in exhaust shafts provided there is a continuous airflow upward to the outside and the fan is provided with backup standby power.

     

    2.      Fire dampers are not required where penetrations are tested in accordance with ASTM E 119 or UL 263 as part of the fire-resistance-rated assembly.

     

    3.            Fire and smoke dampers are not required where ducts are used as part of an approved smoke control system in accordance with Section 909 of the Building Code.

     

    4.            Fire and smoke dampers are not required where the penetrations are in dedicated parking garage exhaust or supply shafts that are separated from other building shafts by not less than 2-hour fire-resistance-rated construction.

     

    5.            Smoke dampers are not required at penetrations of shafts where the building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 of the Building Code.

     

    6.            Fire dampers and combination fire/smoke dampers are not required in kitchens and clothes dryer exhaust systems installed in accordance with the Mechanical Code.

     


    CHAPTER 8                         chimneys and vents

     

    801      General

     

     

    801      GENERAL

     

    Insert new Section 801.18.5 in the Mechanical Code to read as follows:

     

    801.18.5 Integrity inspection.  Before a new or replacement vented appliance is approved for use in connection with an existing chimney, the chimney shall be relined or shall be inspected for integrity by the permit holder, in the presence of the code official, using a scented smoke test or other approved method. In lieu of observing the test, the code official is authorized to accept a certification of integrity of the chimney, issued by the licensed contractor who conducted the inspection or test.


    CHAPTER 9             SPECIFIC APPLIANCES, FIREPLACES AND SOLID FUEL-BURNING EQUIPMENT

     

    922      Kerosene and Oil-Fired Stoves

     

     

    922      KEROSENE AND OIL-FIRED STOVES

     

    Strike Section 922.1 of the International Mechanical Code in its entirety and insert new Section 922.1 in the Mechanical Code in its place to read as follows:

     

    922.1 General.  Kerosene and oil-fired stoves shall not be used or installed in any premises.

     


    CHAPTER 10           BOILERS, WATER HEATERS AND PRESSURE VESSELS

     

    1001        General

    1003        Specific Requirements for Boilers and Pressure Vessels

    1004    Permits for Construction and Installation of Boilers
    and Unfired Pressure Vessels; Permit and Inspection Fees

    1005        Requirements for Power Boilers

    1007        Installation of Low Pressure Heating Boilers

    1008        Boiler Controls

    1010    Safety Valves

    1011    Explosion Doors

    1012    Miniature Boilers

    1013    Installation of Unfired Pressure Vessels

    1014    Safety Valves for Unfired Pressure Vessels

    1015    Water Storage Tanks, Water Heaters, Hydro-Pneumatic Tanks

    1016    Hydro-Pneumatic Tanks

    1017    Relief Valves, Gauges and Safety Controls

    1018    Welding on Boilers and Unfired Pressure Vessels

    1019    Test Methods

    1020    Repairs by Welding

    1021    Welded Repairs on Boilers and Unfired Pressure Vessels

    1022    Existing Power Boiler Installations

    1023    Parts and Equipment for Existing Power Boiler Installations

    1025    Existing Miniature Boiler Installations

    1026    Existing Unfired Pressure Vessel Installations

     

     

    Strike Section 1001 of the International Mechanical Code in its entirety and insert Section 1001 in the Mechanical Code in its place to read as follows:

     

    1001        GENERAL

     

    1001.1 Scope.  This chapter shall govern the installation, repair, maintenance, testing and inspection of new and existing boilers, water heaters and pressure vessels.

     

    1001.1.1 Exceptions. The following pressure vessels, boilers, tanks and containers are not covered by this chapter.

     

    1.      Pressure vessels used for unheated water supply.

     

    2.      Portable unfired pressure vessels and Interstate Commerce Commission containers.

     

    3.      Containers for bulk oxygen and medical gas.

     

    4.      Unfired pressure vessels having a volume of 5 cubic feet (0.14 m3) or less operating at pressures not exceeding 250 pounds per square inch (psi) (1724 kPa) and located within occupancies of Groups B, F, H, M, R, S and U.

     

    5.      Pressure vessels used in refrigeration systems that are regulated by Chapter 11 of the Mechanical Code.

     

    6.      Pressure tanks used in conjunction with coaxial cables, telephone cables, power cables and other similar humidity control systems.

     

    7.      Any boiler or pressure vessel subject to inspection by federal inspectors.

     

    1001.2 Standards applicability.  Boilers, pressure vessels and their respective appurtenances and control systems shall be designed, constructed, installed, inspected, repaired or altered in accordance with the requirements of this Chapter and of the specific provisions of the following standards, to the extent of their respective references contained in this Chapter:

     

    1.         ASME BPVC, Boiler and Pressure Vessel Code;

     

    2.         ASME CSD-1;

     

    3.         NFPA 8501, NFPA 8502, NFPA 8504;

     

    4.         UL 726; and

     

    5.         ANSI/NBBPVI NB-23 National Board Inspection Code (NBIC).

     

    1001.3 Permit Requirement.  A permit shall be obtained from the code official for each boiler or unfired pressure vessel installed, erected, or moved and reinstalled, or re-erected in a new location in the District of Columbia before any work in connection with the equipment is performed.

     

    1001.4 Licensed engineer requirement.  The owner or user of a facility containing one or more boilers or pressure vessels shall be responsible for employing or contracting for the services of a  an engineer holding the appropriate class of license for the size of the facility, issued by the Department in accordance with the requirements of the District of Columbia Board of Industrial Trades ( Title 17, DCMR). The engineer’s license shall be framed, protected under a durable transparent material and prominently displayed in the boiler room or engine room.  A daily log of plant operations documenting daily testing of all boiler safeties and controls for each tour of duty shall also be kept in the boiler room or engine room.

     

    1001.4.1 Engineer’s license suspension or revocation.  Any engineer licensed by the District of Columbia to operate boilers or pressure vessels covered by this code shall be subject to fines and other penalties for violation of the Construction Codes, and to suspension or revocation of his or her engineer’s license, if he or she shall operate, or cause to be operated, any boiler or unfired pressure vessel under his or her supervision without a certificate of inspection or with a certificate that has expired.  Revocation or suspension of a license, shall be in accordance with the procedures laid out at D.C. Official Code §§ 47-2853.17 through 47-2853.30. 

     

    1001.5 Inspection criteria.  The approval of the design and the inspection of the construction, installation and operation of power boilers, steam boilers, hot water boilers and pressure vessels in the District of Columbia, shall be performed in accordance with the requirements of the ASME Code, ANSI/NBBPVI NB-23 and ASME CSD-1, as specified by this Chapter and the manufacturer’s inspection instructions.  Inspections for compliance with specific District of Columbia safety requirements shall be performed in accordance with this Chapter.

     

    1001.5.1 Equipment replacement.  The inspection of boiler and pressure vessel equipment installed to replace inoperable equipment shall be performed in accordance with the inspection requirements for new construction as specified in Section 1001.5.

     

    1001.5.2 Existing equipment.  Inspection of boilers and pressure vessels installed and operating in existing facilities shall be performed at a frequency in accordance with the requirements of ANSI/NBBPVI NB-23 and this Chapter.

     

    Strike Section 1003 of the International Mechanical Code in its entirety and insert Section 1003 in the Mechanical Code in its place to read as follows:

     

    1003    REQUIREMENTS FOR BOILERS AND PRESSURE VESSELS

     

    1003.1 Certificates of inspection.  No person shall use or cause to be used any steam boiler or unfired pressure vessel until a certificate of inspection has been issued and posted as required in this Chapter.  The certificate of inspection shall not be issued until it is determined that the boiler or pressure vessel condition is in conformity with the ASME Code and this Chapter, and the provisions of the Construction Codes  governing the installation of fuel burning equipment in the District of Columbia.  A separate certificate of inspection shall be required for each equipment unit inspected. Each certificate shall be protected under a durable transparent material in a frame to be supplied by the owner or user and shall be prominently displayed in the boiler room or engine room near the equipment to which it pertains.  Certificates for portable equipment shall be kept with the equipment at all times.

     

    1003.2 Final inspection.  Upon installation, erection or alteration of any boiler or unfired pressure vessel in the District of Columbia for which a permit is required, including

    re-installation or erection of any used boiler or unfired pressure vessel, a final inspection by the code official is required to verify compliance with the applicable Construction Code provisions

     

    1003.2.1 Responsibility of installer. On all installations for which a permit has been issued, the contractor or person making the installation shall be responsible for notifying the code official, with sufficient advance notice so that the necessary inspections can be performed in a timely manner.  The contractor or person making the installation shall be responsible for ensuring that no boiler or unfired pressure vessel shall be operated until final inspection has been performed and approved by the code official to operate the equipment.

     

    1003.3 Renewal of certificate of inspection.  No person shall operate or cause to be operated any boiler or unfired pressure vessel requiring inspection under this code without a current certificate of inspection.  Each certificate of inspection must be renewed annually, or at an interval specified by the code official, as long as the equipment is in service.  Renewal will be granted upon satisfactory demonstration to the code official that the equipment or system has met all of the inspections and testing required by the Construction Codes and referenced standards. Inspections shall be made by the code official, or by an insurance company inspector as permitted by Section 1003.12, at the expense and responsibility of the owner or user.

     

    1003.4 Responsibility to notify code official.  Where a boiler or unfired pressure vessel subject to the provisions of this code is not covered by a current certificate of inspection, the owner or user of such boiler or pressure vessel shall immediately notify the code official in writing of the following information:

     

    1.         The location of each boiler or unfired pressure vessel not covered by a current certificate of inspection;

     

    2.         The date of the last inspection, if any;

     

    3.         Whether or not the equipment is insured and inspected by an insurance company; and

     

    4.         The name of the company that insures such equipment.

     

    1003.5 Operating pressure.  No person shall operate or cause to be operated any boiler or unfired pressure vessel at a pressure in excess of the allowable pressure as stated on the certificate of inspection.

     

    1003.5.1 Marking of pressure vessels.  Unfired pressure vessels operated at a pressure in excess of 60 pounds per square inch (psi) (414 kPa) and having a capacity in excess of 15 gallons (57 L) shall bear the following information:

     

    1.         The ASME symbol;

     

    2.         The name of the manufacturer;

     

    3.         The maximum allowable working pressure;

     

    4.         The serial number and National Board Numbers;

     

    5.         The year built; and

     

    6.         Any other required data to indicate that it has been built in accordance with the provisions of Section VIII of the ASME Boiler and Pressure Vessel Code.

     

    Exception:  Marking of nonstandard pressure vessels shall not be required to contain the information indicated in items 1, 4 and 6 of this section.

     

    1003.6 Safety devices.  Boilers and unfired pressure vessels shall be equipped with safety appliances and piping as prescribed in the ASME Code.  No person shall operate or cause a boiler or unfired pressure vessel to be operated unless equipped with the prescribed safety appliances and piping, and no person shall remove or tamper with any safety appliance or piping, except for the purpose of making repairs.  Any adjustments to safety valves shall be made only by direction of the code official or an insurance company inspector.

     

    1003.7 Tests.  When in the judgment of the inspector it is considered necessary to demonstrate the proper operation of the boiler safeties and controls, or to demonstrate the licensed engineer’s ability to properly operate the boiler, the safety-valve capacity of a boiler and/or the low water cutout shall be tested.  An accumulation test shall be made by shutting off all other steam-discharge outlets from the boiler, and operating the fuel-burning equipment to produce the maximum steaming capacity of the boiler.  An evaporation test shall be performed to demonstrate proper operation of the low water cutout.

     

    1003.7.1 Safety-valve.  The safety-valve equipment shall be sufficient to prevent the pressure from rising more than (a) 6 percent above the maximum allowable working pressure, for power boilers, and (b) 5 pounds per square inch (psi) (34 kPa) above the maximum allowable working pressure, for heating boilers.  Provision shall be made for piping the safety valve discharge out of the boiler room during a test pursuant to Section 1003.7.

     

    1003.8 Portable boiler or unfired pressure vessel.  No temporary portable boiler or unfired pressure vessel shall be used until it has been inspected by the code official or an insurance company inspector in accordance with this Chapter 10 and a certificate of inspection has been issued.  Each owner or user of portable boilers or unfired pressure vessels shall furnish in writing to the code official, yearly, before December 27, the following information:

     

    1.         A list of his or her portable boilers and unfired pressure vessels;

     

    2.         The location of each portable boiler and unfired pressure vessel in the list; and

     

    3.         A statement for each portable boiler and unfired pressure vessel in the list, indicating whether the boiler or pressure vessel is insured and inspected by an insurance company.

     

    1003.9 Annual boiler inspection requirements.  All steam boilers including hot water boilers shall be inspected annually by the code official or by an insurance company inspector as provided in Section 1003.15. . The inspection shall include the following.

     

    1003.9.1 Internal inspection .The internal inspection shall consist of a thorough examination of all tubes, seams, rivets, drums, stay bolts and other parts to insure that the boiler is in safe operating condition and able to carry the pressure allowed.

     

    1003.9.2  External inspection.  The external inspection, to determine the general condition of the boiler and its appurtenances as well as the adequacy of safety valves, pressure gauges, apparatus for determining water level and other appliances, shall be made under normal operating conditions at which time the steam pressure carried shall be observed and the operation of all valves, gauges, safety devices or other appliances shall be checked to ensure that they are in proper working order.

     

    1003.9.3  Hydrostatic test.  A hydrostatic test shall be required when, in the judgment of the code official or insurance company inspector, it is considered necessary in the interest of safety. The test shall be conducted with water at a temperature of at least 70 °F (21 °C) but not higher than 120 °F (49 °C), with pressure applied to the vessel at 1.5 times the maximum allowable working pressure. The test pressure shall hold for 30 minutes.

     

    1003.10 Boiler preparation.  A steam or hot water boiler shall be prepared for internal inspection by the owner or user on a date specified by the code official.  Insofar as practicable, the internal inspection shall be made no later than 15 days prior to the expiration of the current certificate of inspection.  In no case shall the internal inspection be deferred more than 30 days after the date of expiration of the certificate of inspection.  The code official is authorized to order a steam or hot water boiler discontinued from service until the inspection is performed.

     

    1003.10.1 Inspection Procedure.  Preparation for internal inspection shall be made in the following manner:

     

    1.         Water shall be drawn off and the boiler thoroughly washed out;

     

    2.         All manhole and handhole plates, washout plugs and the water column connection plugs shall he removed and the furnace and combustion chambers thoroughly cooled and cleaned;

     

    3.         All grates or stoker dead plates of internally-fired boilers shall be removed; and

     

    4.         All leaks of steam or hot water into the boiler shall be stopped. The inspector is also authorized to require the removal of brickwork and insulation covering the seams of shell, drums or domes, sufficient to determine the size and pitch or rivets, their condition, and any other information as may be necessary to definitely determine the condition of the boiler and its fitness for safe operation.

     

    1003.10.2 Hydrostatic test preparation.  A steam or hot water boiler shall be prepared for hydrostatic test by the owner or user, when required by the inspector by filling the boiler with water to the stop valve and blanking off the connections of the boiler to other boilers when that boiler is connected to other boilers that are under steam pressure.  Arrangements shall be made with the inspector for the protection of the safety valve and under no circumstances shall the safety valve spring be screwed down for making hydrostatic tests.

     

    1003.10.3 Test gauges.  An indicating test gauge shall be connected directly to the boiler or pressure vessel where it is visible to the operating engineer throughout the duration of the test.  The pressure gauge scale shall be graduated over a range of not less than 1.5  times and not greater than four  times the maximum test pressure.  All gauges utilized for testing shall be calibrated and certified by the operating engineer.  

     

    1003.11 Unfired pressure vessels requiring annual inspection.  Each unfired pressure vessel operating at a pressure in excess of 60 pounds per square inch (psi) (414 kPa) and having a capacity in excess of 15 gallons (57 L) shall be inspected annually by the code official or an insurance company inspector as permitted by Section 1003.12.  Any unfired pressure vessel as described herein shall be subjected to inspection if it is connected to a source of supply.

     

    1003.11.1 Type of Inspection.  The annual inspection of unfired pressure vessels shall consist of an external inspection including safety devices and other appurtenances.  When a vessel is provided with manholes an internal inspection shall also be performed.

     

    1003.11.2 Hydrostatic Test.  A hydrostatic test shall be required when, in the judgment of the inspector, it is considered necessary in the interest of safety.  This test shall be conducted with water at a temperature of at least 70 °F (21 °C) but not higher than 120 °F (49 °C), and shall consist of applying to the vessel a pressure of 1.5 times the maximum allowable working pressure.  The test pressure shall hold for 30 minutes.

     

    1003.12 Annual inspection by insurance company inspectors.  Any steam or hot water boiler or unfired pressure vessel which is insured and inspected at least once annually by an insurance company inspector shall be exempt from annual inspection by the code official, provided that  the requirements of Sections 1003.12.1  through 1003.12.3  are satisfied.

     

    1003.12.1 ASME Code.  The insurance company inspector shall apply the inspection provisions in Section I, Part PG, paragraph PG-90, “Inspection and Tests - General” in the ASME Code.

     

    1003.12.2  Qualifications.  In order to perform inspection of boilers or pressure vessels

    in the District of Columbia, the inspector shall hold a current certificate of competency issued by the code official in accordance with this code.

     

    1003.12.3 Inspection reports.  The insurance company inspector shall file reports of inspections and other data relating to an insured boiler or unfired pressure vessel, as may be required, with the code official within ten business days after the inspection, on the standard forms and in the manner prescribed by the code official; provided, that the internal inspection report shall be filed in time to prevent the certificate of inspection from becoming more than 30 days overdue.  Each report shall be printed or typewritten, bear the original inspector’s signature in ink and state unambiguously whether or not the certificate of inspection should be issued, and the equipment working pressure allowed.

     

    1003.12.3.1 Supplemental report. If the inspector has ordered or recommended changes or repairs to be made following inspection, the inspection report filed with the code official in accordance with Section 1003.12.3 shall state the nature of all changes or repairs ordered or recommended. No later than 30 days after the inspection during which the deficiencies were identified, the insurance company inspector shall re-inspect the insured boiler or pressure vessel and submit a supplemental report to the code official stating whether the changes or repairs have been completed. If the work has not been completed within the time allowed, the code official is authorized to order operation of the equipment to be discontinued, or to take any other actions authorized by the Construction Codes.

     

    1003.13 Certificates of competency for insurance company inspectors. 

     

    1003.13.1 Application.  In order to obtain or renew a certificate of competency, each inspector employed or retained, by an insurance company licensed to operate in the District of Columbia, to inspect boilers and pressure vessels located in the District of Columbia that are insured by the company shall submit an application to the code official, in the form prescribed and provided by the code official. The application shall include the following:

     

    1. Name, age, qualifications, experience and local address of the inspector;

     

    2. Documentation evidencing employment or retention by an insurance company licensed to operate in the District of Columbia for the inspection of boilers and pressure vessels in the District of Columbia;

     

    3. A copy of a valid current certificate issued by the National Board to the inspector; and

     

    4. Such other data and information as may be required by the code official.

     

    1003.13.2 National Board certification.  The code official is authorized to accept a certificate issued by the National Board, upon proper substantiation, and to issue a certificate of competency based on such National Board certificate.

     

    1003.13.3 Filing fee. All applications for a new or renewed certificate of competency shall be accompanied by a filing fee of $200, or such amount as may be established in the applicable fee schedule published in the D.C. Register.

     

    1003.13.3 Expiration. The certificate of competency shall be issued for a two-year period, provided, however, any certificate of competency issued shall become null and void if the inspector holding the certificate of competency ceases to be employed or retained by the insurance company upon which his or her National Board eligibility is based, or if the National Board certification on which the inspector’s certificate of competency is based is cancelled or invalidated.

     

    1003.14 Insurance company reporting duties.  An insurance company that insures any boiler or pressure vessel in the District of Columbia shall immediately report the following information to the code official by written notice:

     

    1.  The name of the owner or user and the location of every boiler and unfired pressure vessel on which insurance is refused, canceled or discontinued by the company and the reason therefore;

     

    2.  The location and name of the owner or user of each new boiler or pressure vessel upon which coverage is taken, whether the new equipment has been inspected by the code official and whether an installation permit has been obtained;.  

     

    3.  The names of the DC-licensed  engineers working on all watches, and the grade of license held by each engineer , and if there  is none, the report shall so state; and

     

    4. The termination or cessation of any employment or contractual relationship with an insurance company inspector and the reasons therefore.  

     

    1003.15 Internal inspection.  In the case of boilers that can be internally inspected, certificates of inspection shall not be issued until after the internal inspection has been performed.

     

    1003.16 Notice to make repairs or alterations.  If upon inspection by the code official it is found that repairs, alterations or cleaning are necessary to ensure the safe operation of a steam boiler, hot water boiler or unfired pressure vessel, and its conformity to the ASME Code and this Chapter, a written notice stating the work required to be done and the time allowed for completion shall be sent to the owner or user.

     

    1003.16.1 Repairs, alterations or cleaning.  Repairs, alterations or cleaning required under Section 1003.16 shall be made as directed.  Upon completion of the work ordered, the owner or user shall notify the code official.  If the work has not been completed within the time allowed, the code official is authorized to order operation of the equipment to be discontinued, and to take any other actions authorized by the Construction Codes.

     

    1003.17 Condemnation of defective, unsafe or dangerous equipment.  Whenever the code official  finds that a boiler or unfired pressure vessel, or its necessary appurtenances, is in such a defective or unsafe condition that life or property is endangered, he or she shall immediately order its further use and operation discontinued.  A boiler or unfired pressure vessel which has been declared unsafe or condemned by the code official shall be distinctly labeled as “Unsafe to Use” or condemned by the Department.  The provisions of Sections 115 and 116 of the Building Code and Sections 108 and 109 of the Property Maintenance Code shall also apply to defective, unsafe or dangerous boilers and unfired pressure vessels.

     

    1003.17.1 Operation prohibited. No person shall operate or cause to be operated any boiler or unfired pressure vessel which is known to be unsafe or which has been condemned by the code official.  No person shall operate or cause to be operated any boiler or unfired pressure vessel, the further use and operation of which has been ordered discontinued by the code official until the defective or unsafe condition which was the reason for such action has been corrected and a new certificate of inspection is issued.  

     

    1003.17.2 Notification of unsafe condition. If an insurance company inspector finds that a boiler or unfired pressure vessel, or its necessary appurtenances, are in such a defective or unsafe condition that life or property is endangered, and which, in his or her opinion cannot be repaired and made safe, he or she shall immediately notify the code official.

     

    1003.17.3 Abatement. The owner or user of the equipment deemed unsafe shall abate or cause to be abated or corrected such unsafe condition.

     

     

    1003.18 Numbering boilers and unfired pressure vessels.  Every boiler and unfired pressure vessel installed in the District of Columbia shall be given a District of Columbia number.  Numbers assigned to cast-iron boilers shall be of metal not less than 1 inch (25.4 mm) in height and shall be securely attached to a metal plate which in turn shall be securely attached to the front of the boiler.  Miniature boilers shall have sufficient space provided so that the District of Columbia boiler number can be stamped on the shell and be clearly visible when the insulating jacket is in place.  Numbers on condemned boilers shall not be reassigned.

     

    Strike the title of Section 1004 of the International Mechanical Code and insert a new title in Section 1004 of the Mechanical Code in its place to read as follows:

     

    1004    PERMITS FOR CONSTRUCTION AND INSTALLATION OF BOILERS AND UNFIRED PRESSURE VESSELS; PERMIT, INSPECTION AND MISCELLANEOUS FEES

     

    Strike Section 1004.7 of the International Mechanical Code in its entirety and insert new Sections 1004.7 and 1004.8 in the Mechanical Code in its place to read as follows:

     

    1004.7 Permits required for installation.  No person shall erect, install, re-erect or reinstall or cause to be erected, installed, re-erected or reinstalled any steam or hot water boiler or unfired pressure vessel until he or she shall have made application on the form provided by the code official, and obtained an installation permit.

     

    1004.7.1 Permit applications.  Applications for permits shall be accompanied by a form U-1, “Manufacturer’s Data Report,” as specified in the ASME Code, properly filled out and signed by an authorized boiler inspector employed by an insurance company, showing that the boiler or unfired pressures vessel has been constructed and inspected in accordance with the requirements of the ASME Code.  When an application is made to install a used boiler or unfired pressure vessel sufficient specific information shall be furnished to show that the boiler or unfired pressure vessel has been built in accordance with all the requirements of the ASME Code and is so stamped.  

     

    1004.7.2 Inspection of used equipment.  Before an installation permit for a used boiler or unfired pressure vessel shall be issued, the code official shall cause the boiler or unfired pressure vessel to be inspected in order to determine whether it is safe to operate, and any repairs or changes that shall be deemed necessary.

     

    1004.8 Permit, inspection and miscellaneous fees.  The code official is authorized to require the payment of fees, pursuant to the applicable fee schedule published in the D.C. Register, for permits, inspections and other miscellaneous services related to boilers and unfired pressure vessels, including, but not limited to, fees for permit processing, inspections, welding qualification tests and issuance of certificates of competency and certificates of  inspection.  

     

    Strike Section 1005 of the International Mechanical Code in its entirety and insert new Section 1005 in the Mechanical Code in its place to read as follows:

     

    1005    REQUIREMENTS FOR POWER BOILERS

     

    1005.1 Steel platforms.  To provide access to the top of every power boiler setting, a steel platform shall be provided, reached by means of a stationary steel stairway or ladder.  The platform shall be provided with a 4 inch (102 mm) high toe guard, with a steel railing not less than 36 inches (914 mm) inches in height, and shall have a runway not less than 30 inches (762 mm) in width, made of steel grating or other approved material.

     

    1005.2 Platform access.  The stairway or ladder shall not be less than 16 inches (406 mm) in width and shall provide easy access to and from the platform.  Where more than one boiler is served by the same platform, or where otherwise deemed necessary, a second stairway or ladder, remote from the first one, shall be provided.

     

    1005.3 Means of egress.  Two unobstructed and accessible means of egress remote from each other shall be provided in every room housing power boilers with an aggregate capacity of 75 horsepower (56 kW) or over, or heating boilers with an aggregate capacity of 2,400,000 btu/h (703 kW) or over.  Blow off pits, ash pits, alleyways, steam pipe tunnels and other places where there would be danger of personnel being trapped shall have adequate ventilation, lighting and a number of means of egress deemed adequate by the code official.

     

    1005.4 Blow-off discharge.  Blow-off piping from power boilers shall not discharge directly into a sewer.  A blow-off tank or sump shall be used where conditions do not provide an adequate and safe open discharge.

     

    1005.5 Blow-off tanks.  Blow-off tanks shall be designed for at least 50 percent of the working steam pressure of the boiler to which it is connected and shall be built in accordance with the ASME Code.  The tanks shall have a discharge connection at least 6 inches (152 mm) above the maximum water level with a water seal, a vent from the top of the tank and a cold-water connection to the top of the tank.  The vent shall be routed to a safe point of discharge above the roof of the building where it is located or the roof of any adjoining building, so as not to constitute a hazard or nuisance.  The vent shall be substantially supported.  The design of each tank and appurtenant piping shall be submitted to the Department for approval.  Tank, outlet and vent sizes shall not be less than indicated in Table 1005.5.

     

    TABLE 1005.5

    REQUIREMENTS FOR POWER BOILERS BLOW-OFF TANKS

    BOILER RATING

    TANK SIZE

    OUTLET

    (inches nom.)

    VENT

    (inches nom.)

    2 to 25 horsepower

    24 in. diameter by 36 in. long

    2

    2

    26 to 75 horsepower

    30 in. diameter by 48 in. long

    3

    3

    76 to 150 horsepower

    36 in. diameter by 54 in. long

    5

    4

    151 to 250 horsepower

    36 in. diameter by 60 in. long

    5

    5

    251 to 600 horsepower

    42 in. diameter by 66 in. long

    5

    6

    601 to 1,000 horsepower

    48 in. diameter by 72 in. long

    6

    6

    For SI: 1 inch = 25 mm, 1 horsepower = 0.7457 kW.

     

    Strike Section 1007 of the International Mechanical Code in its entirety and insert new Section 1007 in the Mechanical Code in its place to read as follows:

     

    1007    INSTALLATION OF LOW PRESSURE HEATING BOILERS

     

    1007.1 Return water connection.  The return water connection to every low pressure steam or hot water heating boiler shall be arranged to form what is known as a “Hartford Loop” so that the water cannot be forced out of the boiler below the safe water level.  This connection shall be installed on each boiler, with the inside bottom of the return pipe close nipple, where it connects to the equalizing loop, at the same level as the top of the bottom nut of the water gauge glass.

     

    1007.2 Equalizer pipe.  Each boiler shall have a separate equalizer pipe installed between the bottom opening of the boiler and the boiler stop valve, when used. The equalizer pipe shall not have a valve in it at any point and shall not be used as a means to connect two or more boilers together below the water line. Equalizer pipe sizes shall not be less than the schedules indicated in Table 1007.2.

     

    TABLE 1007.2

    EQUALIZER PIPE SIZES

    GRATE AREA

    (square feet)

    S.V.R.C. a

    (pounds per hour)

    PIPE SIZE

    (inches nom.)

    Under 4

    250 or less

    1 ½

    4 to 15

    251 or 2000

    2 ½

    Over 15

    2001 or over

    4

    For SI: 1 square foot =0.0929 m2, 1 inch = 25 mm, 1 pound/hour = 0.4536 kg/h.

    a.  S.V.R.C., Safety Valve Relieving Capacity, for this purpose, shall be the capacity of the boiler as stamped on a steel boiler or on the name plate of a cast iron boiler.

     

    1007.3 Stop valve.  When a stop valve is used in the return line of the loop it shall be located within 6 feet (1829 mm) of the floor.  A drain valve shall be provided at the lowest point of the return line. Galvanized pipe and fittings shall not be used in any part of the equalizer pipe or return line.

     

    1007.4 Public water system mechanical feed.  Each boiler shall be provided with a mechanical feed line supplied from a reliable public water system.  The feed line shall not connect directly into any part of a boiler exposed to the direct radiant heat from the heat source.  It shall be connected to the equalizing line between the boiler and the condensate return connection and shall have a check valve in the line as close to the boiler as possible.

     

    1007.5 Boiler feed line.  The boiler feed line shall be designed so as to adequately take care of the maximum demand of the boiler.

     

    1007.6 Public water system shut-off valve.  All connections from the public water system shut-off valve shall be made of brass pipe with screwed fittings. Tubing shall not be used.

     

    Exceptions:

     

    1.            Low-pressure heating boilers bearing the ASME stamp that are trimmed by the manufacturer.

     

    2.            Low-pressure heating boilers rated less than 100 horsepower (74.6 kW).

     

    1007.7 Condensate return pump.  A condensate return pump shall have capacity to supply the boiler or boilers it serves with sufficient water to maintain a normal water level when the boilers are operating at maximum capacity.  When more than one boiler is served by the pump, the condensate return line shall be arranged to supply all boilers adequately.

     

    1007.8 Stop valve.  A stop valve shall be installed in each supply and return connection of two or more boilers connected to a common system.  When a stop valve is used in the supply pipe connection of a single boiler, there shall be one used in the return pipe connection and vice versa.  If there are multiple branch connections, each one shall be valved.  When stop valves over 2 inches in nominal size are used they shall be of the outside screw-and-yoke type.

     

    1007.8.1 Stop valve location.  Stop valves shall be located as close to the boiler as possible and when over 7 feet (2134 mm) above the floor shall be made accessible for operation by means of either (1) a permanent steel ladder and platform; or (2) a chain or motor operated mechanism.

     

    1007.9 Blow-off connections.  Each boiler shall have one or more blow-off connections fitted with straightway valves connected directly with the lowest water space.  Plug or bob cocks shall not be used.  A discharge pipe shall be run to the floor, full size, with an “ell” at the bottom to direct the water away from the operator, or to a blow-off tank.  A “tee” fitting shall be used at the boiler in order to provide a cleanout for the line.  Blow-off valves and discharge pipes shall not be smaller than the schedule indicated in Table 1007.9 based on the equivalent direct radiation rating of the boiler.  If a surface blow down is used, it shall be run full size to the floor with an “ell” at the bottom, or to an approved drain.

     

    TABLE 1007.9

    BLOW-OFF VALVES AND DISCHARGE PIPES

    BOILER RATING

    (square feet E.D.R.)

    Valve and Pipe Size

    (inches nom.)

    Under 1000

    ¾

    1001 to 3500

    1

    3501 to 8500

    1 ½

    8501 and over

    2

      For SI: 1 square foot = 0.0929 m2, 1 inch = 25 mm.

     

    1007.10 Wash-out and hand-hole openings.  All wash-out and hand-hole openings shall be accessible and shall not be obstructed or blocked by pipe or other obstacle.  Capped pipe nipples and plugs shall be installed in wash-out openings.

     

    1007.11 Cross connections.  There shall be no cross connection below the water line, for any purpose, between two or more boilers.

     

    Strike Section 1008 of the International Mechanical Code in its entirety and insert new Section 1008 in the Mechanical Code in its place to read as follows:

     

    1008.1 Steam limit control.  Every steam boiler, when mechanically fired, shall be provided with a steam limit control (pressure regulator) that shall operate to prevent the steam pressure from rising above the allowable working pressure of the boiler.  All connections shall be on non-ferrous pipe with screwed fittings.  There shall not be any valve between the boiler and the control.

     

    Exceptions:

     

    1.            Boilers that bear the ASME stamp and are trimmed by the manufacturer are exempt from the non-ferrous pipe with screwed fittings requirement.

     

    2.            Boilers rated less than 100 horsepower (74.6 kW) are exempt from the non-ferrous pipe with screwed fittings requirement.

     

    1008.2 Master limit control.  When two or more boilers are connected to a common header, a master limit control connected into the main steam header shall be provided to control all boilers simultaneously.

     

    1008.3 Low-water fuel cut-off.  Each steam boiler, when mechanically fired, shall be equipped with an approved low-water fuel cut-off, so arranged as to automatically cut off the fuel supply in case the water-level gauge indicates low-water level.

     

    1008.4 Independent operational controls.  The operation of automatic operational controls shall not be dependent upon the functioning of any other device.

     

    1008.5 Oil burner cut-off location.  When an oil burner is manually operated, the cut-off valve shall be located in the oil line close to the burner and shall only be re-set manually.

     

    1008.6 Valve location restriction.  No valves shall be permitted between the low-water fuel cut-off and the boiler.

     

    1008.7 Water gauge glass controls.  Each steam boiler shall have one or more water-gauge glasses attached to the water column or directly to the boiler by means of valved fittings, with the lower fitting provided with a drain valve of the straightway type with opening not less than 1/4 inch (6.4 mm) diameter.  The gauge glasses shall be visible from the operating floor and without the removal of any cover or casing.  There shall be no obstruction to interfere with visibility of the gauge glasses.

     

    1008.8 Operating elevated gauge glass controls.  When gauge cocks or gauge glass shut off cocks are located 78 inches (1981 mm) or more above the operating floor, they shall be of the quick opening type with chains or rods attached for operation from the floor.  The gauge glass and pressure gauge shall be illuminated by a light with an approved type of reflector so that they can be easily read.

     

    1008.9 Automatic water feeder.  An automatic water feeder shall be installed on each mechanically fired steam heating boiler.  It shall have sufficient capacity to take care of the water demand for maximum boiler output.

     

    1008.10 Feed pump capacity.  A boiler feed pump, when used, shall have capacity to supply sufficient water to all boilers served to maintain a normal water level when the boiler or boilers are operating at maximum capacity.

     

    1008.11 Public water system by-pass.  A public water system by-pass valve, with the valve accessible from the floor, shall be installed around a feeder and shall have a valved drain extended to within 6 inches (152 mm) of the floor.  A mechanical water feeder supplied from a public water system shall be installed with a bypass valve, with inlet and outlet valves accessible from the floor, with cross tees for inspection and with the drain valve piping extended to within 6 inches (152 mm) of the floor.

     

    1008.12 Feed-water level.  A water feeder shall be installed so that it will not cause the water level to rise above the normal operating level specified by the manufacturer of the boiler.

     

    1008.13 Minimum boiler water level.  On low-pressure steam heating boilers, the water gauge glass shall be located so that the lowest permissible water level in the glass shall be as specified in sections 1008.13.1 through 1008.13.4.

     

    1008.13.1 Multiple fire-tube boilers.  For multiple fire-tube boilers at least 1/2 inch (13 mm) of water shall be maintained over the top row of tubes or the fusible plug, if used, whichever is higher.

     

    1008.13.2 Scotch Marine boilers.  For package type Scotch Marine boilers at least 1/2 inch (13 mm) of water shall be maintained over the top row of tubes or the fusible plug, if used, whichever is higher.

     

    1008.13.3 Horizontal tube boilers.  For fire-box, horizontal water tube boilers at least 1 inch (25 mm) of water shall be maintained over the highest point of the crown sheet.

     

    1008.13.4 Miscellaneous boilers.  For any other type boiler the minimum water level shall be maintained in accordance with the manufacturer’s recommendations.

     

    1008.14 Multiple boiler water level.  Two or more boilers that share any appurtenance shall be arranged so that the low water lines of all boilers are at the same level.

     

    Exception:  When each boiler is provided with an individual pump control and an individual automatically operated feed water control valve, operation with different water levels shall be allowed.

     

    1008.15 Boiler pressure gauge.  Every boiler shall have a pressure gauge connected to its steam space, or to its water column, or to its steam connection by means of a siphon or equivalent device exterior to the boiler, and of sufficient capacity to keep the gauge tube filled with water.  The pressure gauge shall be arranged so that the gauge cannot be shut off from the boiler except by a cock with a “tee” or lever handle installed in the pipe near the gauge.

     

    1008.16 Cock handle position.  The handle of the cock for the pressure gauge shall be parallel to the pipe in which it is located when the cock is open.

     

    1008.17 Gauge scale graduation.  The scale on the dial of a gauge on a low pressure boiler shall be graduated to not less than 30 pounds psi (210 kPa), in 5 psi (35 kPa) increments.  Connections to steam gauge siphons shall be of non-ferrous pipe.  The gauge shall be visible at all times without the removal of any cover or casing, and shall be of such size and so located as to be easily readable from the operating floor.

     

    Exceptions:

     

    1.            Boilers that bear the ASME stamp and are trimmed by the manufacturer are exempt from the non-ferrous pipe connection requirement.

     

    2.            Boilers rated less than 100 horsepower (74.6 kW) are exempt from the non-ferrous pipe connection requirement.

     

    1008.18 Independent controls.  When two or more mechanically fired steam boilers are connected to the same system, each boiler shall have independent low-water fuel cut-offs, pressure controls, pressure gauges and water feeders.

     

    1008.19 Non-ferrous pipe and fittings.  All of the connections for the water column, water feeder, low-water fuel cut-off and make up water line to the boiler, shall be of non-ferrous pipe and screwed fittings, with a cross at each right angle turn and with a check valve in the feed line as close to the boiler as possible.  High pressure boilers shall have a valve between the boiler and the check valve.  Tubing shall not be permitted on boiler piping or fittings.  All piping shall be firmly braced and supported.

     

    Exceptions:

     

    1.            Boilers that bear the ASME stamp and are trimmed by the manufacturer are exempt from the non-ferrous pipe with screwed fittings requirement.

     

    2.            Boilers rated less than 100 horsepower (74.6 kW) are exempt from the non-ferrous pipe with screwed fittings requirement.

     

    1008.20 Drain locations.  Boiler drains shall be located so that the discharge will not impinge on the boiler setting or electrical equipment.  Water column, water feeder and low-water fuel cut-off shall each have separate full size straight-way valve drains extended to within 6 inches (152 mm) from the floor or to a visible approved drain, with the valves located so as to be conveniently accessible for operation.  Plug cocks shall not be used.

     

    Strike Section 1010 of the International Mechanical Code in its entirety and insert new Section 1010 in the Mechanical Code in its place to read as follows:

     

    1010    SAFETY VALVES

     

    1010.1 General.  Each steam boiler shall be provided with one or more safety valves of the spring-pop type, having side outlet discharge, adjusted and sealed to discharge at a pressure not to exceed 15 pounds per square inch (psi) (103 kPa).  Seals shall be attached so as to prevent the valve from being taken apart or re-set to relieve at a higher pressure without breaking the seal.

     

    1010.2 Lever-lifting device.  Each valve shall have a substantial lever-lifting device which will positively lift the disk from its seat at least 1/16 inch (1.6 mm) when there is no pressure on the boiler.  Where the lever is more than 78 inches (1981 mm) above the floor, a flexible chain or cable operating over a pulley shall be provided so that the valve can be tested.

     

    1010.3 Safety valve marking.  Each steam safety valve shall bear the ASME symbol to indicate that it complies with the requirements of the ASME Code in regard to construction, testing and rating, and shall be plainly and permanently marked by the manufacturer in such a way that the marking will be readable when the valve is installed and will not be obliterated in service.

     

    1010.3.1 Marking data. The marking shall include the following information:

     

    1.         The manufacturer’s name;

     

    2.         The type and catalog number;

     

    3.         The pressure at which it is set to open; and

     

    4.         The capacity in pounds of steam per hour as certified by the National Board.

     

    1010.4 Valve capacity.  The steam safety valve capacity for each steam boiler shall be such that with the fuel burning equipment installed and operating at maximum capacity, the pressure cannot rise more than 5 psi (34 kPa) above the maximum allowable working pressure of the boiler.

     

    1010.5 Non-compliant valves.  When a safety valve no longer meets the provisions of sections 1010.1 through 1010.4, such as when there is no stamping on a valve or it is not legible, or when a safety valve does not function properly, a new safety valve or valves as required in section 1010 shall be installed.

     

    1010.6 Installation.  It shall be the responsibility of the contractor making the installation or changes to a system to provide and install the necessary safety valves, as required by this Chapter and/or recommended by the manufacturer.

     

    1010.7 Accumulation test.  In case of dispute over the safety valve capacity or when, in the judgment of the code official or insurance company inspector, it is considered necessary to test the capacity of the safety valves, an accumulation test shall be conducted by the contractor, owner or operator in the presence of the code official or insurance company inspector.

     

    1010.7.1 Test procedure.  The accumulation test shall be conducted by closing off all other discharge outlets from the boiler and operating the fuel burning equipment at maximum capacity.  The safety valves shall be sufficient to prevent the pressure from rising more than 5 psi (34 kPa) above the maximum allowable working pressure of the boiler.  Provision shall be made for piping the steam discharge from the boiler room during the test.

     

    1010.8 Minimum capacity.  The minimum required capacity of the safety valve or valves, in pounds of steam per hour, shall be determined as follows:

     

    1.         For steel or cast iron boilers, multiply the area of heating surface in square feet, if available, by 5 or use the maximum rating output of the boiler as specified by the manufacturer, whichever is greater.

     

    2.         If the fuel burning equipment installed will produce a greater output than the minimum obtained in Section 1010.8(1), the minimum capacity of the safety valve or valves shall be based on the maximum output obtainable. In any event the requirements of Section 1010.4 shall be met.

     

    1010.9 Safety valves connection.  Safety valves shall be connected to boilers, with the spindle in a vertical position, in any one of the following ways:

     

    1.         Directly to a tapped or flanged opening in the boiler;

     

    2.         To a fitting connected to the boiler by a close nipple;

     

    3.         To a Y-base;

     

    4.         To a valveless steam pipe between the adjacent boilers; or

     

    5.         To a valveless header connecting steam outlets on the same boiler.

     

    1010.9.1 Y-base connection.  When a Y-base is used pursuant to Section 1010.9(3) above, the inlet area shall not be less than the combined outlet areas.

     

    1010.9.2 Clearance.  There shall be sufficient clearance above and around safety valves so that they can be removed and replaced without dismantling.  The identification plate shall be located so as to be readable.

     

    1010.10 Shut-off prohibition.  No shut-off or connection of any description shall be placed between a safety valve and the boiler, nor on the valve discharge pipe between such valve and the atmosphere.  A safety valve shall not be connected to an internal pipe in the boiler.  Tubing or galvanized pipe shall not be used between the valve and boiler.

     

    1010.11 Discharge pipe.  A discharge pipe shall not be used on safety valves on low pressure equipment, except where a boiler is located in a restricted space or where the discharge from the valve might constitute a hazard to persons or to equipment.  A discharge pipe shall be designed to accommodate the opening of a single valve or the aggregate area of all valves, based on the nominal diameter of the discharge openings of the valves with which it connects.  The cross section of the discharge pipe shall be equal to the area of all of the safety valves discharging into it.

     

    1010.11.1 Discharge pipe installation.  The discharge pipe shall be fitted with an open drain to prevent water from lodging in the upper part of the valve or in the pipe.  When an elbow is placed on a safety valve discharge pipe, it shall be located close to the valve outlet and 45° turns shall be used.  The discharge pipe shall be braced and supported so that no weight or strain is placed on the valve body.  The discharge shall be arranged so there will be no danger of scalding attendants.  A safety valve shall not be installed so as to discharge inside the casing of a self-contained boiler.

     

    1010.11.2 Discharge pipe location.  The safety valve or valves of each high-pressure boiler shall be provided with a full size discharge pipe leading to a safe point of discharge, which shall be above the roof of the building where it is located, or of any adjoining building to which it could constitute a hazard or nuisance.  Visible, non-valved drains shall be provided to receive the discharge from the valve discharge piping.

     

    1010.11.3 Discharge pipes not required.  Boilers of 25 horsepower (18.6 kW) or less shall not be required to have safety valve discharge pipes if the discharge from the safety valve will not constitute a hazard.

     

    1010.12 Connection of two or more boilers.  When two or more boilers with different allowable working pressures are connected to a common steam main, safety valves shall be allowed to be set at a pressure exceeding the lowest allowable pressure, provided that the boilers with allowable working pressures below the safety valves’ set pressure shall be protected by a safety valve or valves placed on the connecting pipe to the steam main.

     

    1010.12.1 Connecting pipe.  The area or combined area of the safety valve or valves placed on the connecting pipe to the steam main, as provided for in Section 1010.12, shall not be less than the area of the connecting pipe or the area of the steam main, whichever is smaller.  Each safety valve placed on the connecting pipe shall be set at the lowest allowable pressure of any of the connected boilers.

     

    Strike Section 1011 of the International Mechanical Code in its entirety and insert new Section 1011 in the Mechanical Code in its place to read as follows:

     

    1011    EXPLOSION DOORS

     

    1011.1 Explosion doors.  Each boiler burning fuel in suspended or gaseous form shall have one or more self-closing explosion doors located in the boiler setting and breeching as required. This section shall apply to new installations and to existing installations that are changed to burn fuel in suspended or gaseous form.

     

    1011.2 Deflectors.  Explosion doors, when located in the walls of the boiler setting within 7 feet (2134 mm) of the firing floor or of any platform or walkway, shall be provided with substantial deflectors to divert the blast of exploding gas so that it will not constitute a hazard.

     

    Insert new Section 1012 in the Mechanical Code to read as follows:

     

    1012    INSTALLATION OF MINIATURE BOILERS

     

    1012.1 Miniature boiler limitation.  Miniature boiler is a power or high-temperature water boiler that does not exceed the size and pressure limits specified in its definition.  Where any one of the limits specified in the definition is exceeded, the rules for power boilers shall apply.

     

    1012.2 Clearance.  Each boiler shall be located so that adequate space will be provided for the proper operation of the boiler and appurtenances, for the inspection of all surfaces and for their necessary maintenance and repair.  Each miniature boiler shall have the following minimum clearances:

     

    1.         18 inches (457 mm) on all sides;

     

    2.         3 feet (914 mm) from electric meters and main-line switches;

     

    3.         18 inches (457 mm) from all other switches and fuse boxes; and

     

    4.         3 feet (914 mm) horizontally from any gas meter.

     

    1012.3 Feed pump.  Each miniature boiler operating at a pressure in excess of 25 pounds psi (172 kPa) shall be provided with at least one feed pump or other approved feeding device except where the steam generator is operated with no extraction of steam (closed system).

     

    1012.4 Blow-off connection.  Each miniature boiler shall be provided with a blow-off connection that shall not be reduced in size and shall be led to a safe point of discharge.  Whenever, in the judgment of the boiler inspector a safe place of discharge cannot be provided, a blow-down tank shall be installed, and a 1 inch (25 mm) vent leading to a safe point of discharge shall be provided on the tank.  The blow-off shall be fitted with a valve or cock in direct connection with the lowest water space practicable.

     

    1012.5 Mechanically fired boilers.  Each mechanically fired miniature boiler shall be provided with an automatic low-water fuel cut-off so located as to automatically cut off the fuel supply in case the water level falls to the level of the bottom of the water glass.

     

    1012.6 Gas-fired boilers.  Where miniature boilers are gas-fired, the burners used shall conform to the requirements of the Fuel Gas Code.  The burner shall be equipped with an automatic fuel-regulating governor that shall be regulated by the steam pressure.  This governor shall be so constructed that, in the event of its failure, there shall be no possibility of steam from the boiler entering the gas chamber or gas supply pipe.  A manual stop or throttle valve shall be located in the inlet pipe ahead of the fuel-regulating governor.  All applicable requirements of the Fuel Gas Code shall be satisfied.

     

    1012.7 Boiler vent installations.  Each gas-fired miniature boiler shall be connected to a vent or flue, or to a chimney, extended to an approved location outside of the building.  The venting arrangement shall be of approved design and in accordance with the boiler manufacturer’s installation instructions.

     

    Insert new Section 1013 in the Mechanical Code to read as follows:

     

    1013    INSTALLATION OF UNFIRED PRESSURE VESSELS

     

    1013.1 Access for inspection.  Each unfired pressure vessel shall be installed so that it is available for complete external inspection of shell and heads and shall be located so that, wherever possible, there will be not less than 12 inches (305 mm) between the vessel and any floor, wall, ceiling or other obstruction.  There shall be no piping or other obstructions to prevent proper access.  Any manhole or inspection opening shall be located so that it is readily accessible.  All stamping and longitudinal welded or riveted joints shall be located in a position so as to be readily visible to the inspector.  Where necessary to install a vessel underground, it shall be enclosed in a concrete or brick pit with a removable cover so that inspection of the entire shell and heads of the vessel can be performed.

     

    1013.2 Structural supports.  Each unfired pressure vessel shall be supported by masonry or structural supports of sufficient strength and rigidity to safely support the vessel and its contents.  Provisions shall be made to reduce vibration in both the vessel and its connecting piping.

     

    1013.3 Piping and connections.  All piping and connections to an unfired pressure vessel shall be supported in a substantial and safe manner so that there is no strain placed upon the vessel.  Provision shall be made for expansion, contraction and drainage.

     

    1013.4 Protection.  Each unfired pressure vessel shall be painted with two coats of approved paint, so that it is protected from rust and corrosion.  It shall not be in contact with any corrosive material or moisture.

     

    1013.5 Drip pipe.  Each unfired pressure vessel shall have a bottom drip pipe fitted with a valve or cock in direct connection with the lowest space practicable.  The minimum size of pipe and fittings shall be 3/4 inch (19 mm) except for tanks 20 inches (508 mm) in diameter or less, in which the minimum size of the pipe and fittings shall be 1/4 inch (6.4 mm).  If a plug cock is used, the plug shall be held in place with a guard or gland.  Globe valves and cocks shall not be used.

     

    1013.6 Pressure gauge.  Each unfired pressure vessel shall have a pressure gauge connected in a manner that the gauge cannot be shut off from the vessel, except by a cock with a “tee” or lever handle, which shall be placed on the pipe near the gauge.  Connections to gauges shall be placed on the pipe near the gauge.  Connections to gauges shall be made of non-ferrous pipe and fittings from the tank to the gauge.  Tubing shall not be used.  The dial of the gauge shall be graduated to not less than 1.5 times the maximum pressures allowed for the vessel. A 1/4 inch (6.4 mm) test gauge connection shall be provided for attaching the inspector’s test gauge.

     

    Insert new Section 1014 in the Mechanical Code to read as follows:

     

    1014    SAFETY VALVES FOR UNFIRED PRESSURE VESSELS

     

    1014.1 General.  Each unfired pressure vessel shall be protected by safety and relief valves and shall be provided with indicating and controlling devices to ensure its safe operation.  These valves and devices shall be so constructed, located and installed that they cannot readily be rendered inoperative.

     

    1014.2 Safety valves.  The relieving capacity of safety valves shall be such as to prevent pressure in the vessel from rising to more than 10 percent above the maximum allowable working pressure, taking into account the effect of static head.  Safety valve discharge shall be carried to a safe place.

     

    1014.3 Type of safety valve.  Each pressure vessel safety valve shall be of the direct spring-loaded type, having a substantial lever-lifting device so that the disk can be lifted from its seat by the spindle not less than 1/8th the diameter of the valve when the pressure of the vessel is 75 percent of that at which the safety valve is set to open.

     

    1014.4 Marking.  Every pressure vessel valve shall be marked “ASME” or “National Board Standard,” and shall bear the following information:

     

    1.         The name or identifying mark of the manufacturer;

     

    2.         The pipe size of valve inlet;

     

    3.         The pressure at which the valve is set to open; and

     

    4.         The relieving capacity.

     

    1014.5 Prohibited safety valves.  Safety valves having either the seat or disk of cast iron shall not be used.

     

    1014.6 Multiple safety valves.  If more than one safety valve is used, the discharge capacity shall be taken as the combined capacity of all valves.

     

    1014.7 Pressure relief in unfired pressure vessels.  For vessels in which pressure is not generated but is derived from an outside source, each safety valve shall be so connected to the vessel, vessels or system which it protects as to prevent pressure from rising beyond the maximum allowable pressure in any vessel protected by the safety valve.

     

    1014.8 Pressure relief in other than unfired pressure vessels.  For vessels in which pressure may be generated, the safety valve or valves shall be connected directly to the vessel that is to be protected or to a pipe line leading to the vessel.  The internal cross-sectional area of the pipe line shall be not less than the nominal area of the safety valve or valves used, and without any intervening valve between the vessel and the safety valve or valves protecting it.

     

    1014.9 Pressure relief escape pipe.  When an escape pipe is used, it shall be full-sized and fitted with an open drain to prevent liquid from lodging in the upper part of the safety valve, and no valve of any description shall be placed on the escape pipe between the safety valve and the atmosphere.

     

    1014.10 Escape pipe fittings.  When an elbow is placed on an escape pipe, it shall be located close to the safety valve outlet or the escape pipe shall be securely anchored and supported.  When two or more safety valves are placed on one connection, this connection shall have a cross-sectional area at least equal to the combined area of these safety valves.

     

    1014.11 Freeze protection.  Each safety valve which is exposed to a temperature of 32 °F (0 °C) or less shall have a drain at least 3/8 inch (9.5 mm) in diameter at the lowest point where water can collect.

     

    1014.12 Spring adjustment.  Safety-valve springs shall not be adjusted to carry more than 10 percent greater pressure than that for which the springs were made.

     

    1014.13 Valve testing.  Each safety valve shall be tested at least once every day by raising the disk from its seat.

     

    1014.14 Valve sizing.  Safety valves for compressed air tanks shall not exceed 3 inches (75 mm) in diameter and shall be sized for the maximum flow of free air that can be supplied, as determined in Section VIII, Division 1, Part UG, paragraph UG-133, “Determination of Pressure Relief Requirements” in the ASME Code.

     

    1014.15 Use of rupture disks.  Rupture disks or heads used for supplemental protection of pressure vessels shall be designed to fail at a pressure above the safety or relief valve setting.

     

    1014.16 Multiple vessels.  When two or more unfired pressure vessels that are allowed different pressures are connected to a common source of pressure, all safety valves shall be set at a pressure not exceeding the lowest vessel working pressure allowed.

     

    Insert new Section 1015 in the Mechanical Code to read as follows:

     

    1015    WATER STORAGE TANKS, WATER HEATERS, HYDRO-PNEUMATIC TANKS

     

    1015.1 Limited capacity storage tanks.  Each hot water storage tank, range boiler, or automatic storage water heater, having a nominal water-containing capacity of 120 gallons (454 L) or less shall be built for a minimum working pressure of 125 pounds psi (862 kPa) and shall be tested hydrostatically to 300 pounds psi (2069 kPa).  Each tank shall have clearly and indelibly stamped or stenciled thereon the name of the manufacturer, the maximum allowable working pressure for which it is built, and the test pressure.

     

    1015.2 Tank labeling.  Each hot water tank shall be stamped with the ASME symbol to indicate that it is constructed in accordance with the ASME Code.  It shall also be stamped with the name of the manufacturer, the maximum allowable working pressure, the year built and the identifying number of the National Board.

     

    1015.3 Manufacturer’s data report.  Applications for permits for hot water storage tanks as described in Section 1015.1 shall be accompanied by the manufacturer’s data report, which shall be signed by an inspector licensed by the National Board to inspect boilers and pressure vessels.

     

    1015.4 Gas-fired automatic storage water heaters.  Gas-fired automatic storage water heaters shall bear a label indicating approval and listing in accordance with the Fuel Gas Code.

     

    1015.5 Oil-fired or electrically-heated water heaters.  Oil-fired or electrically-heated automatic storage water heaters shall be listed and labeled, and shall bear the label of an approved listing agency.

     

    1015.6 Storage water heater label.  Each storage water heater shall bear the manufacturer’s trade name or trademark, the catalog number, the input rating in Btu/h (W), the output in gallons per hour at 100 °F rise in temperature, and the nominal capacity of the storage tank, in gallons (L).

     

    1015.7 Storage tank installation.  Storage tanks shall be substantially supported by one of the following methods:

     

    1.         Installed on steel supports constructed of pipe or structural steel and resting upon a structurally sound floor;

     

    2.         Hung from supports attached to structural steel or concrete beams that have been determined to be of sufficient strength to support the additional weight; or

     

    3.         Installed upon concrete saddles.

     

    In all cases, provision shall be made to take care of expansion.  Tanks shall not be supported by their piping system.  Manhole openings shall be kept clear of all walls, pipes or other obstructions.

     

    1015.8 Gas-fired water heater venting.  Each gas-fired water heater shall be provided with an approved draft diverter installed in accordance with the manufacturer’s installation instructions and connected to an effective chimney.  Connection to a common chimney shall be made above the entrance of other larger vent connectors or breechings, in accordance with Section 803.7.

     

    1015.9 Commercial and industrial installations.  In commercial and industrial establishments, when a connection to a chimney is impracticable, the installation of an automatic unvented water heater shall be approved by the code official if all of the following requirements are met:

     

    1.         The flow of gas supply shall be limited, by fixed orifices, to the maximum flow values specified in Table 1015.9 as a function of the net interior volume of the space in which the heater is located the maximum input rating of the heater shall not exceed 10,000 BTU per hour (3 kW); and

     

    2.         The heater shall otherwise conform to the Construction Codes.

     

    TABLE 1015.9

    MAXIMUM ALLOWABLE GAS FLOW

    FOR UNVENTED COMMERCIAL AND INDUSTRIAL WATER HEATERS

    Net Volume of Room or Space

    (cubic feet)

    MAXIMUM ALLOWABLE GAS FLOW

    (CUBIC FEET PER HOUR, CFH)

    COLUMN NO. 1 a

    COLUMN NO. 2 b

    1000 to 1500

    2

    3

    1501 to 2000

    3

    4

    2001 to 2500

    4

    5

    2501 to 3000

    5

    6

    3001 to 3500

    6

    7

    3501 to 4000

    7

    8

    Over 4000

    8

    8

    For SI: 1 cubic foot = 0.028 m3, 1 CFH = 0.028 m3/h

       a. Column No.1 applies to appliances located in spaces that do not have openings to other spaces.

    b. Column No. 2 applies to appliances located in spaces that have permanent openings of at least 15 square feet (1.4 m2) leading to another space of equal or greater volume.

     

    1015.10 Prohibited use.  Water from a hot water supply boiler, automatic water heater coil or tank shall not be used for building heating, except for auxiliary space heating, permitted to have a by-pass from any such boiler or heater, provided that there is no actual withdrawal of water from the unit and that all surfaces and connections in contact with the water are of copper or other approved corrosion resistant material.

     

    1015.11 Existing tanks.  A tank currently in use shall not be painted, lined or repaired on the inside with any material or in any manner that will affect either the color or taste of the water supply after the tank is put into service.  Any material intended for use as a lining or protective coating for the interior of tanks shall be submitted to the code official for approval.

     

    1015.12 Tank maintenance and repair.  The water supply connections to and from the tank shall be disconnected or plugged while the tank is being cleaned, painted, lined or repaired, to prevent any foreign fluid or substance from entering the distribution piping.  Adequate measures shall be taken for the protection of workers in the tank.

     

    1015.13 Welding repair.  Any repair by welding on a tank shall be done by a qualified welder licensed by the Department and the work shall be witnessed by the code official.

     

    1015.14 Alterations or additions.  When changes or additions are made to an existing hot water supply system or when a storage tank is replaced or moved, compliance with the provisions of this chapter shall be required.

     

    Exception:  When there is no available opening in the top of an automatic storage water heater with a nominal water containing capacity 120 gallons (454 L) or less, it shall be permissible to install the relief valve in the outlet header from the heater, with only one fitting between the relief valve and the tank.

     

    Insert new Section 1016 in the Mechanical Code to read as follows:

     

    1016    HYDRO-PNEUMATIC TANKS

     

    1016.1 Minimum working pressure.  Each hydro-pneumatic tank shall be constructed for a minimum working pressure of 150 pounds psi (1034 kPa).

     

    1016.2 Label.  Each hydro-pneumatic tank shall be stamped with the ASME symbol to indicate that it is constructed in accordance with the ASME Code.  It shall also be stamped with the name of the manufacturer, the maximum allowable working pressure, the year built and the identifying number of the National Board.

     

    1016.3 Manufacturer’s data report.  Applications for permits shall be accompanied by the manufacturer’s data report, which shall be signed by an inspector licensed by the National Board to inspect boilers and pressure vessels.

     

    1016.4 Gauges and manhole.  Each hydro-pneumatic tank shall be provided with a gauge-glass to show the level of the water in the upper section of the tank, and a pressure gauge.  The tank shall also be provided with an 11-inch (280 mm) manhole opening, which shall be kept clear of walls, pipes or other obstructions.

     

    1016.5 Safety relief valves.  Each hydro-pneumatic tank shall be equipped with a lever lifting safety valve bearing the ASME symbol, suitable for use with air, installed in a vertical position on the top of the tank, and set to relieve at or below the maximum allowable working pressure of the tank.  The valve shall be sealed to prevent tampering and there shall be no shut-off valve between the tank and the relief valve.

     

    1016.6 Pressure gauge.  Each hydro-pneumatic tank shall be provided with a pressure gauge not less than 4 inches (102 mm) in diameter connected directly to the tank by means of non-ferrous pipe.  A cock with a “tee” handle shall be placed in the pipe near the gauge.  The gauge shall be graduated to not less than 1.5 times the maximum allowable working pressure of the tank.

     

    1016.7 Valve by-pass.  Each hydro-pneumatic tank shall be piped to include a full-size valved by-pass so that domestic water can be used in the building when the tank is not in service.

     

    1016.8 Vacuum relieving device.  Each hydro-pneumatic tank shall be provided with a vacuum relieving device located on the top of the tank, and a horizontal swing check valve in the water supply line from the pump to the tank, and in the domestic water supply by-pass line to the tank.  A valved sludge drain pipe shall be installed at the bottom of the tank and it shall discharge through an air break into the drainage system of the building.

     

    Insert new Section 1017 in the Mechanical Code to read as follows:

     

    1017    RELIEF VALVES, GAUGES AND SAFETY CONTROLS

     

    1017.1 General.  Each hot water storage tank and automatic water heater shall be equipped with safety controls to prevent the temperature of the water in the tank from exceeding 200 °F (93 °C) and the pressure from exceeding the maximum allowable working pressure for which the tank is built.  Each such unit shall be equipped with the following:

     

    1.         A pressure relief valve and a separate temperature relief valve of the spillage type;

     

    2.         A combination temperature-pressure relief valve of the spillage type; or

     

    3.         In the case of automatic water heaters manufactured as a unit, a thermostat and a pressure relief valve.

     

    1017.2 Pressure relief valves.  Each pressure relief valve shall be of the lever lifting, spring-loaded type without disk on the pressure side of the valve.  The valves shall be set to relieve at a pressure at or below the maximum allowable working pressure of the tank and shall be so arranged that they cannot be reset to relieve at a higher pressure than that stamped thereon.

     

    1017.3 Relief valve capacity.  The pressure relief valve or valves shall have sufficient capacity to prevent the pressure in the tank from rising to more than 10 percent above the maximum allowable working pressure.  The rated capacity of the valve or valves shall be equal to the maximum gross output of the heating unit installed.  The gross output shall be determined from the data supplied on the manufacturer’s nameplate or catalog data, or from the fuel input.

     

    1017.4 Labeling.  Pressure relief valves shall bear the ASME symbol to indicate that they comply with the requirements of the ASME Code in regard to construction, testing and rating, and shall be plainly and permanently marked by the manufacturer in a way that the marking will be readable when the valve is installed and will not be obliterated in service.  Pressure relief valves used on non-ASME approved, gas-fired equipment shall bear the seal or mark of an approved agency to indicate listing under the requirements of an approved testing agency.  Pressure relief valves shall bear the ASME symbol for equipment using other fuels.  The marking on pressure relief valves shall include the following information:

     

    1.         The manufacturer’s name;

     

    2.         The type and catalog number;

     

    3.         The pressure at which it is set to open; and

     

    4.         The capacity in pounds of steam per hour (kg/hr) or BTU per hour (W) as certified by the National Board.

     

    1017.5 Valve size.  No pressure relief valve shall be less than 3/4 inch (19 mm) standard pipe size.

     

    1017.6 Valve installation.  Each pressure relief valve shall be installed in a vertical position, directly on the top of the tank, or if there is no opening available, on a fitting in the hot water service line, within 2 inches (51 mm) of the tank.  Each pressure relief valve shall have a full size discharge pipe of non-ferrous metal, with an unthreaded open end, extended to an approved plumbing fixture or, if none is available, to within 6 inches (152 mm) of the floor.  When the discharge pipe is over 1 inch (25 mm) in diameter it shall be supported and braced to prevent any strain being placed on the valve.

     

    1017.7 Multiple valves.  If more than one relief valve is used, it shall be permissible to connect them to a manifold whose inlet pipe area shall be equal to the sum of the areas of the inlet openings of all the connected valves.  There shall be no restriction to pipe cross sectional area on either the inlet or discharge side of the relief valve or valves, and there shall be no shut-off valve or check valve between the relief valve and the tank.

     

    1017.8 Temperature relief valves.  Each temperature relief valve shall bear a label indicating approval and listing by ASME, and shall be approved by the Department.

     

    1017.8.1 Valve type and design.  Each temperature relief valve shall be of the automatic self-closing type with a test lever and shall be designed to open at 200 °F (93 °C) or lower and be of sufficient capacity to limit the temperature to not over 200 °F (93 °C). The valve shall be non-adjustable and shall not be less than 3/4 inch (19 mm) standard pipe size.

     

    1017.8.2 Label.  Each temperature relief valve shall bear a plate permanently attached, giving the following information:

     

    1.         The name of the manufacturer;

     

    2.         The model or type number of the valve;

     

    3.         The temperature at which the valve will open; and

     

    4.         The rated capacity in BTU per hour (W).

     

    1017.8.3 Installation.  Each temperature relief valve shall be installed in a vertical position on the top of the tank.  Temperature relief valves shall be screwed directly into the tank without intervening fittings unless the dip tube extension type is used, in which case the tube shall project into the tank.  If a fitting is used, it shall be of non-ferrous material.  Each valve shall have a full size discharge pipe with an unthreaded open end, extended to within 6 inches (152 mm) of the floor or to an approved receptor fixture.  There shall be no restrictions to pipe cross section area on either the inlet or discharge side of the relief valve, and there shall be no shut-off or check valve between the relief valve and the tank.

     

    1017.9 Combination temperature and pressure relief valve.  When a combination temperature-pressure relief valve is used, it shall conform with the requirements of Section 1017 for pressure relief valves and for temperature relief valves.  It shall bear the ASME symbol, meet the labeling requirements of Sections 1017.4 and 1017.8.2, and bear the symbol of the American Gas Association for the temperature relief element.

     

    1017.10 Aquastat.  Each aquastat used on an automatic gas water heater shall be listed by the American Gas Association, unless provided as part of a complete American Gas Association approved unit, and shall operate to shut off the gas supply to limit the temperature of the heated water to not over 210 °F (99 °C).

     

    1017.11 Hot water heating systems.  Hot water supply boilers, tankless heaters, electric heaters, immersion heating coils in boilers and any other type of heater shall be protected against excessive pressure, as provided herein.

     

    1017.11.1 Pressure gauge.  Each hot water supply boiler and hot water storage tank shall be provided with a pressure gauge connected directly to the boiler or tank by means of non-ferrous pipe.  A cock with a “tee” handle shall be placed in the pipe near the gauge.  The gauge shall have a dial not less than 4 inches (102 mm) in diameter and shall be so located that it can be easily read from the floor.  It shall be graduated to not less than one and one-half (1½) times the maximum allowable working pressure of the boiler or tank.  Gauges shall not be required for range boilers and domestic type water heaters.

     

    1017.11.2 Thermometer.  Each hot water supply boiler, hot water storage tank, tankless heater, immersion type heater or any other type of heater shall be provided with a thermometer capable of providing readings up to 300 °F (149 °C), of a size and so located that it can be easily read from the floor.  It shall be located in a well so that it will indicate the temperature of the water at or near the outlet and shall be accurate within 2 percent. Thermometers shall not be required for range boilers or domestic type water heaters.

     

    1017.11.3 Water mixing valve.  When hot water is used by the general public or by persons not in control of the heating equipment, an approved water mixing valve shall be installed to limit the temperature of the water at the fixtures to not over 140 °F (60 °C).  A thermometer shall be installed on the discharge side of the mixing valve and shall be of a size and so located as to be easily read from the floor.

     

    Insert new Section 1018 in the Mechanical Code to read as follows:

     

    1018    WELDING ON BOILERS AND UNFIRED PRESSURE VESSELS

     

    1018.1 Rules for welding on boilers and unfired pressure vessels.  The construction, installation, repair or alteration of a boiler or unfired pressure vessel by welding shall be made in accordance with the section of the ASME Code governing the particular kind of vessel or work to be done, or by the specific requirements in this section for welded repairs.

     

    1018.1.1 Qualified welding procedure.  A contractor desiring to make repairs shall have a written welding procedure specification that shall be prepared and qualified in accordance with the Welding Qualification of Section IX of the ASME Code.  Alternatively, the contractor shall have the option to use the standard District of Columbia welding procedure specification.  The selected procedure shall then be used for qualifying each welder and shall be strictly adhered to in making repairs under this chapter.  A welder shall be limited to the type of steel and thickness of plate for which he or she is qualified.

     

    1018.1.1.1 Unacceptable welds.  Welding repairs or alterations on boilers or unfired pressure vessels and connections thereto, performed by unqualified contractors or welding operators, shall not be accepted for either new or existing installations.

     

    1018.1.2 Welder qualification.  Each welder shall pass satisfactory qualification tests as required by the ASME Code.

     

    1018.1.3 Qualification standard.  The qualification test for individual welders shall be made in accordance with the ASME Code.  The test shall be made in the presence of the code official who shall stamp the specimens with an identifying number.  The code official shall have the option of accepting a welder without further examination, provided that the applicant submits proof of a satisfactory welding procedure and operator qualification test, made in accordance with the ASME Code and these regulations, for approval prior to any welding.

     

    1018.1.4 Specimens testing.  After the specimens have been prepared as required by the ASME Code, they shall be tested either by the code official or the National Institute of Standards and Technology (NIST).  The test shall be made in accordance with the guided-bend jig test as described in the ASME Code. A report shall be made on a form similar to the data recording forms in Section IX, Appendix B of the ASME Code.

     

    1018.1.5 Authorization card.  If the report indicates that the welder has passed the test, the code official shall issue a card authorizing him or her to perform welding on boilers or unfired pressure vessels in the District of Columbia.  This authorization shall be valid for a period of two years from the date of the test.

     

    1018.1.6 Welder qualification limitations.  The qualification test does not qualify a welder to do welding on pressure piping.

     

    1018.2 Qualification retest.  A welder who fails to meet the requirements for one or more of the test specimens shall be allowed to be retested unless, in the judgment of the code official, the welder requires further training or practice, in which case a complete retest of the welder shall be performed after completion of such additional training or practice.  When a request for an immediate retest is approved, the welder shall make two test welds of each type for each position on which the welder has failed.  To become qualified, all of the retest weld specimens shall pass the specimen test specified in 1018.1.4.

     

    1018.3 Welder retest requirements.  Notwithstanding the issuance of a qualification card, the code official has the authority to request a new test under any the following circumstances:

     

    1.         When a welder has not welded under the procedure specification for a period of three months or more;

     

    2.         When there is a specific reason to question the welder’s ability to make welds that meet the specification; or

     

    3.         At the expiration of the welder’s two year qualification period.

     

    1018.3.1 Questionable welds.  If any question arises as to the quality of a weld, the code official is authorized to require that test specimens be trepanned from the weld. Preparation and testing of the specimens shall be done by NIST, and the contractor shall be responsible for all expenses incidental to this testing.

     

    1018.3.2 Welding inspection requirements.  No welding on any boiler or unfired pressure vessel shall be done before an inspection has been made by the code official or an insurance company inspector, and the method of welding has been sanctioned by the code official or the insurance company inspector.  If, in the opinion of the code official, or the insurance company inspector a hydrostatic test is necessary, that test shall be applied after the repairs have been completed.

     

    1018.4 Responsibilities of insurance company inspector.   Before repairs are started, the insurance company inspector shall examine the written welding procedure and records of qualification tests, to verify that procedures and welders have been properly approved, tested and qualified. The insurance company inspector who authorized and witnessed the repair shall submit a written report to the code official on every welded repair.

     

     

    Insert new Section 1019 in the Mechanical Code to read as follows:

     

    1019    TEST METHODS

     

    1019.1 Welder qualification tests.  The qualification tests described herein shall be specifically devised to determine a welder’s ability to produce sound welds.  In order to determine the welder’s ability to make groove welds in various plate positions, tests with the groove in the following three positions shall be required:

     

    1.         Test Position I – Plates placed in a vertical position with the welding groove horizontal. This test shall qualify the welder to make horizontal flat welds.

     

    2.         Test Position II – Plates placed in a vertical position with the welding groove vertical. This test shall qualify the welder to make vertical flat welds.

     

    3.         Test Position III – Plates placed in a horizontal position with the weld metal deposited form the underside of the plates. This test shall qualify the welder to make flat welds in the overhead position.

     

    1019.2 Weld plate specifications.  The base material of the plates to be welded shall be of flange or firebox steel quality, 3/8 inch (9.5 mm) thick and having a tensile strength of not less than 55,000 pounds psi (379 MPa).  The plates shall be 5 inches (127 mm) long by 6 inches (152 mm) wide, and shall be prepared for a single “V” groove butt joint.

     

    1019.3 Preparing test specimens.  The method of preparing test specimens shall be as follows:

     

    1.         When the welding has been completed, specimens shall be removed as directed, by machine or flame cutting. They shall be approximately 1½ inches (38 mm) wide.

     

    2.         The weld reinforcement shall be removed by machine or grinding, flush with the surface of the base material.

     

    3.         The corners of the edges of all test specimens shall be rounded to a radius of not more than 1/15 inch (1.7 mm).

     

    In addition to (1), (2) and (3) above, the test specimens shall be prepared as specified in Section IX, paragraph QW-462, “Test Specimens,” of the ASME Code.

     

    1019.4 Specimen testing methods and passing criteria.  The method of testing specimens shall be as follows:

     

    1.         Specimens shall be bent in a bending jig called the “guided bend test,” until the curvature of the specimen is such that a 1/32 inch (0.8 mm) wire cannot be passed between the curve portion of the plunger and the specimen.

     

    2.         Face bend specimens shall be placed with the face of the weld toward the gap in the jig; root bend specimens shall be placed with the root of the weld toward the gap.

     

    After removal from the jig, the convex surface of the specimens shall be examined for the appearance of cracks or other open defects.  Any specimen in which a crack or other open defect exceeding 1/8 inch (3.2 mm) measured in any direction is present after the bending shall be cause for failure to pass the test.

     

    Insert new Section 1020 in the Mechanical Code to read as follows:

     

    1020    REPAIRS BY WELDING

     

    1020.1 Repairs limited to specific types of steel.  These rules shall be applicable only to repairs to steel having a known weldable quality, and are further limited to carbon steel having a carbon content of not more than 0.35 percent and to low alloy steel having a carbon content of not more than 0.25 percent.  A welder shall not make repairs in a plate with thickness in excess of that permitted under the qualification tests in the ASME Code.  A welder shall not make repairs on a material for which the welder is not qualified, or in a thickness of plate that exceeds that permitted under the welder’s qualification conditions.

     

    1020.2 Groove welding.  Groove welds shall completely penetrate the material being welded.  If possible, welding shall be applied from both sides of the plate, or a backing strip or ring may be used to ensure complete penetration.  Welds shall have a convex surface on both sides if applied on both sides of the plates being joined, or on the weld side if welding is applied from one side only.  No valleys or undercutting at edges or welded joints shall be permitted.  The reinforcement may be chipped, ground or machined off flush with the base material, if so desired, after the welding has been completed.

     

    1020.3 Defective weld repairs.  In making a repair to a weld that has failed in service, the defective weld material shall be removed by chipping or grinding until sound material is reached on all sides.  The resulting groove shall be filled as required by the applicable welding procedure.

     

    1020.4 Carbon steel stress-relieving.  In the repair of carbon or low alloy steel, thermal stress-relieving shall be applied to the completed work when required by these rules and when considered necessary by the code official or insurance company inspector.  The heat may be applied by any means that will raise the temperature of the material, in the region of the weld, gradually and uniformly, to approximately 1200 °F (649 °C).  In the absence of a more accurate means of determining temperature, reaching a dull “red glow” in daylight will suffice.  This temperature shall be maintained for a period of 1 hour/inch (1 hour/25 mm) of thickness of the joined material.

     

    1020.4.1 Circumferential joints.  For circumferential joints, the area heated shall comprise a band extending completely around the cylinder and having a width on each side of the center line of the weld not less than three times the greatest width of the finished weld.

     

    1020.4.2 Nozzles.  For nozzles, the heated area shall comprise a circumferential band of the shell of the vessel extending around the entire joint, including the nozzle of the welded attachment, and shall extend at least six times the vessel plate thickness beyond the weld that connects the nozzle or other attachment to the vessel.

     

    1020.4.3 Stress-relief cooldown procedure.  Upon completion of the stress-relieving operation, the plate shall be allowed to cool at a rate not greater than 500° F (278° C) per hour divided by the maximum thickness of the welded part in inches, until the temperature of 500° F (260° C) is reached, after which normal cooling by exposure to air in a still atmosphere shall be permitted.

     

    1020.5 Thermal stress-relief alternatives.  Where conditions are such that thermal stress relieving as outlined above is inadvisable, another method of stress-relieving acceptable to the code official or insurance company inspector shall be used.  When deemed necessary, preheating shall be used.

     

    Insert new Section 1021 in the Mechanical Code to read as follows:

     

    1021    WELDED REPAIRS ON BOILERS AND UNFIRED PRESSURE VESSELS

     

    1021.1 Crack repair in stayed areas.  Cracks in stayed areas shall be allowed to be repaired by welding, provided that no multiple or star cracks radiating from rivet or stay bolt holes shall be welded.

     

    1021.2 Crack repair in unstayed areas.  Cracks in unstayed shells, drums or headers of boilers or pressure vessels shall be allowed to be repaired by welding, provided that the cracks do not extend between rivet holes in a longitudinal seam, or parallel to a longitudinal riveted seam within 8 inches (203 mm), measured from the nearest caulking edge.  The total length of any one such crack shall not exceed 8 inches (203 mm).  A crack of greater length shall be allowed to be welded provided the complete repair is radiographed and stress-relieved.  Any crack that is allowed to be welded shall be properly prepared to permit fusion through the entire plate thickness.

     

    1021.3 Crack repair in unstayed furnaces.  Cracks of any length in unstayed furnaces shall be allowed to be welded, provided that the welds are thermally stress-relieved.  Welds shall be applied from both sides of the plate wherever possible.  Welds applied from one side only shall be allowed to be used if expressly permitted by the inspector.  Repair of cracks by welding at the knuckle or turn of flange of furnace openings shall be prohibited except upon special prior approval by the boiler inspector.

     

    1021.4 Corrosion repair in stayed furnaces.  Corroded areas in stayed furnaces shall be allowed to be built up by welding, provided that the remaining uncorroded plate material has an average thickness of not less than 50 percent of the original plate thickness, and further provided that the areas so affected are not deemed by the inspector to be sufficiently extensive to impair the safety of the object.  In cased furnaces, the stays and stay bolts shall come completely through the reinforcing metal and the original ends of the stay bolts shall be plainly visible to the inspector. 

     

    1021.5 Corrosion repair around access openings.  Corroded areas around manholes or handhole openings, in either stayed or unstayed plates, shall be allowed to be built up by welding, provided that the average loss of thickness does not exceed 50 percent of the original plate thickness and that the area to be repaired does not extend more than 3 inches (76 mm) from the edge of the hole.

     

    1021.6 Corrosion repair in unstayed shells.  Corroded areas in unstayed shells, drums or headers of boilers or pressure vessels shall be allowed to be built up by welding, provided that the remaining uncorroded plate material has an average thickness of not less than 50 percent of the original plate thickness, and further provided that the inspector has deemed that the safety of the object has not been impaired.

     

    1021.7 Repairs to connector areas.  Edges of butt straps, of plate laps, of nozzles, or of connections, attached by riveting, shall be allowed to be restored to their original thickness by welding.  No seal welding shall be used except upon special prior approval by the boiler inspector, and in no case shall seal welding be used where cracks are present in riveted areas.

     

    1021.8 Welding tube ends. The ends of tubes in fire-tube and water-tube boilers shall be allowed to be welded, provided that they have not been reduced more than 10 percent in thickness and they comply with the requirements of paragraphs PWT-11 and PFT-12 in Section I, Parts PWT and PFT of the ASME Code.

     

    1021.9 Re-ending tubes and pipes.  Re-ending of piecing tubes or pipes in either fire-tube or water-tube boilers shall be permitted, provided that the thickness of the tube or pipe has not been reduced by more than 10 percent from the thickness required by the ASME Code for the approved pressure.  In all cases they shall comply with the requirements in Section I, Part PWT, paragraph PWT-10, “Tube Wall Thickness” of the ASME Code.

     

    1021.10 Patch material.  The material used for patches shall be of the same general quality and have at least the same yield strength of the plate to be patched.  The thickness of any patch shall be at least equal to, but not more than 1/3 inch (8.5 mm) greater than, the plate being patched.

     

    1021.11 Permitted patches.  Flush or butt-welded patches or new sections shall be allowed to be applied to stayed plates without limitation of size or plate thickness.  Lapped or fillet-welded patches shall be allowed to be applied to stayed plates, provided that they are not exposed to radiant heat.  Lapped and fillet-welded patches shall be allowed to be applied on the pressure side of the sheet in unstayed areas, provided that the maximum diameter of the opening so repaired does not exceed 16 times the thickness of the plate, but in no case shall the opening be larger than 8 inches (203 mm) in diameter.

     

    1021.12 Patches not permitted.  No flush or butt-welded patches shall be permitted in unstayed shells, drums or headers.

     

    1021.13 Threaded to weld-in stays.  Threaded stays shall be allowed to be replaced by welded-in stays, provided that, in the judgment of the code official or insurance company inspector, the plate adjacent to the stay bolt has not been materially weakened by deterioration or wastage.  All requirements of the applicable sections of the ASME Code governing welded-in stays, including Section I, Part PW, paragraph PW-19, “Welded-in Stays” shall be met.

     

    Insert new Section 1022 in the Mechanical Code to read as follows:

     

    1022    EXISTING POWER BOILER INSTALLATIONS

     

    1022.1 Maximum allowable working pressure.  The maximum allowable working pressure on the shell or drum of a power boiler shall be determined by the strength of the weakest section of the structure, computed from the following information.

     

    1.         The thickness of the plate;

     

    2.         The tensile strength of the plate;

     

    3.         The efficiency of the longitudinal joint or tube ligaments, whichever is least;

     

    4.         The inside diameter of the course; and

     

    5.         The factor of safety allowed by this chapter.

     

    1022.1.1 Computation.  The maximum allowable working pressure shall be determined in accordance with the following equation:

     

    (TS x t x E)  ÷ (R x FS) = Pm

     

    where:

     

    Pm

     

    = Maximum allowable working pressure (psi) (kPa)

    TS

    = Ultimate tensile strength of shell plates (psi) (kPa)

     

    t

    = Minimum thickness of shell plate in weakest course (inch) (mm)

     

    E

    = Efficiency of longitudinal joint, per Section VIII, Division 1, Part UW, paragraph UW-12 of ASME Code

     

    R

    = Inside radius of the weakest course of the shell or drum (inch) (mm)

     

    FS

    = Factor of safety required by Chapter 10 of the Mechanical Code

     

     

    1022.2 Nonstandard boilers factor of safety.  The factor of safety for nonstandard boilers with longitudinal joints of butt or double strap construction shall be not less than the following:

     

    1.         4.5 for boilers not more than 20 years old;

     

    2.         5 for boilers more than 20 years old, but not more than 25 years old; and

     

    3.         5.5 for boilers more than 25 years old, but not more than 30 years old.

     

    At the beginning of each subsequent 5-year period, the factor of safety shall be increased by not less than 0.5.

     

    1022.2.1 Allowable working pressure limitation.  In no case shall the maximum allowable working pressure on old boilers be increased unless they are being operated at a lesser pressure than would be allowable for similar new boilers, in which case the changed pressure shall not exceed that allowable for new boilers of the same construction.

     

    1022.3 Standard boilers factor of safety.  The factor of safety for standard boilers with longitudinal joints of butt or double strap construction shall be five for boilers not more than 25 years old.  At the beginning of each subsequent 5-year period, the factor of safety shall be increased by not less than 0.5.

     

    Exception:  When a thorough internal and external inspection of a boiler more than 25 years old is conducted, and a hydrostatic pressure test is performed at 1 1/2 times the allowed working pressure of the boiler, during which no leakage or signs of distress develop, the allowed working pressure shall be allowed to continue to be calculated with a factor of safety of five.

     

    1022.4 Water-tube boilers factor of safety.  The factor of safety for nonstandard boilers of the water-tube type with longitudinal joints of lap riveted construction shall be not less than the following:

     

    1.         5 for boilers not more than 20 years old;

     

    2.         5.5 for boilers more than 20 years old, but not more than 25 years old; and

     

    3.         6 for boilers more than 25 years old, but not more than 30 years old.

     

    At the beginning of each subsequent 5-year period, the factor of safety shall be increased by not less than 0.5.

     

    1022.5 Factor of safety for other nonstandard boilers.  The factor of safety for nonstandard fire tube, flue and cylinder boilers, the shells of which are exposed to the products of combustion and which have continuous longitudinal joints of lap-riveted construction exceeding 12 feet (3658 mm) in length, shall be not less than the following:

     

    1.         6 for boilers not more than 10 years old;

     

    2.         6.5 for boilers more than 10 years old, but not more than 15 years old; and

     

    3.         7 for boilers more than 15 years old, but not more than 20 years old.

     

    At the beginning of each subsequent 5-year period, the factor of safety for boilers specified in this section shall be increased by not less than 0.5.

     

    1022.5.1 Reinstallation.  When a boiler regulated by Section 1022.5 is removed from an existing setting, it shall not be reinstalled for an allowable working pressure in excess of 15 pounds psi (103 kPa).

     

    1022.6 Boilers with cast-iron headers and mud drums.  The maximum allowable working pressure on water-tube boilers, the tubes of which are secured to cast-iron or malleable-iron headers or which have cast-iron mud drums, shall not exceed 160 pounds psi (1103 kPa).

     

    1022.7 Assumed tensile strengths.  When the tensile strength of steel or wrought iron shell plates is not known, it shall be taken as 55,000 pounds psi (379 212 kPa) for steel and 45,000 pounds psi (310 264 kPa) for wrought iron.

     

    1022.8 Crushing strength of mild steel.  The resistance to crushing of mild steel shall be taken at 95,000 pounds psi (655 000 kPa).

     

    1022.9 Rivets.  In computing the ultimate strength of rivets in shear, the cross-sectional area of the rivet shank shall be used to determine the value of the shear strength of the rivet, based upon the provisions in Section I of the ASME Code.

     

    1022.9.1 Size of rivets.  When the diameter of the rivet holes in the longitudinal joints of a boiler is not known, the diameter of rivets, after driving, shall be selected from Table 1022.9.1, or ascertained by cutting out one rivet in the body of the joint.

     

    TABLE 1022.9.1

    MINIMUM SIZES OF RIVETS BASED ON PLATE THICKNESS

    Thickness of plate (inch)

    Diameter of rivet after driving (inch)

    1/4

    11/16

    9/32

    11/16

    5/16

    3/4

    11/32

    3/4

    3/8

    13/16

    13/32

    13/16

    7/16

    15/16

    15/32

    15/16

    1/2

    15/16

    9/16

    1-1/16

    5/8

    1-1/16

    For SI: 1 inch = 25 mm

     

    1022.10 Inspection of inaccessible parts.  When the heads of water tube boiler mud drums or headers are not accessible for inspection, the brick work shall be removed after the boiler has been in service for 10 years to facilitate inspection and at not more than 5-year intervals thereafter.  Seams and parts of fire-tube boilers that are not accessible for inspection shall be exposed whenever the code official or insurance company inspector deems that the general condition of the boiler warrants further examination.

     

    1022.11 Safety valves.  Each power boiler shall be equipped with one or more safety valves of the spring-pop type with a lifting device, placed as close to the boiler as possible.  No valve of any description shall be placed between the safety valve and the boiler, nor on the escape pipe between the safety valve and the atmosphere.  When an elbow is placed on a safety valve escape pipe, it shall be located close to the safety valve outlet or the escape pipe shall be securely anchored and supported.  When an escape pipe is used, it shall be full size and fitted with an indirect drain to prevent water from lodging in the upper part of the safety valve or escape pipe.  Safety valves having either the seat or disk of cast iron shall not be used.  Dead weight and lever weight safety valves shall be prohibited.

     

    1022.11.1 Safety valves capacity.  The capacity of the safety valve or valves installed on each boiler shall be such that the safety valve or valves will discharge all the steam that can be generated by the boiler without allowing the pressure to rise to more than 6 percent above the maximum allowable working pressure, nor to more than 6 percent above the highest pressure to which any safety valve is set.

     

    1022.11.2 Safety valves setting.  One or more safety valves on every boiler shall be set at or below the maximum allowable working pressure.  The remaining valves may be set within a range of 3 percent above the maximum allowable working pressure, but the range of setting of all the safety valves on a boiler shall not exceed 10 percent of the highest pressures to which any safety valve is set.

     

    Insert new Section 1023 in the Mechanical Code to read as follows:

     

    1023    PARTS AND EQUIPMENT FOR EXISTING POWER BOILER INSTALLATIONS

     

    1023.1 Fire-actuated fusible plugs.  Where fire-actuated fusible plugs are used, they shall conform to the rules of the ASME Code for new construction.

     

    1023.2 Water glass.  Each steam boiler shall have at least one water glass, the lowest visible part of which shall be as required by the ASME Code for new construction.

     

    1023.3 Gauge cocks.  Each boiler with an allowable working pressure in excess of 15 pounds psi (103 kPa) shall have three or more gauge cocks located within the range of the visible length of the water glass, except when such boiler has two water glasses with independent connections to the boiler located on the same horizontal plane and not less than 2 feet (610 mm) apart.

     

    1023.4 Outlet connections.  No outlet connections shall be placed on the pipes connecting a water column to a boiler, except for connections for a damper regulator, a feed water regulator, a low water fuel cut-off, drains or a steam gauge.  Each water column shall have a valved drain extended to within 6 inches (152 mm) of the floor.

     

    1023.5 Steam gauges.  Each steam boiler shall have a steam gauge connected to the steam space or to the steam connection to the water column.  The steam gauge shall be connected to a siphon or equivalent device of sufficient capacity to keep the gauge tube filled with water and so arranged that the gauge cannot be shut off from the boiler except by a cock placed near the gauge and provided with a “T” or lever handle arranged to be parallel to the pipe in which it is located when the cock is open.

     

    1023.6 Low-water cut-off.  Each mechanically fired steam boiler shall be equipped with a low-water fuel cut-off so located as to automatically cut off the fuel supply when the water level falls below the top of the bottom nut of the water glass.  Each cut-off shall have a drain extended to within 6 inches (152 mm) of the floor.  When two or more mechanically-fired boilers are connected to the same system, each boiler shall have independent low-water cut-offs, controls, and gauges.

     

    1023.7 Stop valve.  Each steam outlet from a high-pressure boiler shall be fitted with a stop valve located as close as practicable to the boiler.  This requirement shall not apply to safety-valve connections.

     

    1023.8 Blow drains.  When a stop valve is so located that water can accumulate, free blow drains shall be provided, the discharge of which shall be visible to the operator while manipulating the valve.

     

    1023.9 Blow-off connection.  Each boiler shall have a full-size blow-off connection, fitted with a valve or cock connected directly with the lowest water space practicable.  When cocks are used, they shall be of the gland or guard type and suitable for the pressure allowed.  Globe valves shall not be used for this purpose.

     

    1023.9.1 Extra heavy blow-off pipe.  When the maximum allowable working pressure exceeds 100 pounds psi (689 kPa), the blow-off shall be extra heavy from boiler to valve or valves, and shall extend full size without reducers or bushings.  Blow-off piping shall be of black wrought iron or black steel and shall be extra heavy pipe.  Galvanized pipe shall not be used for this purpose.

     

    1023.9.2 Fittings.  All fittings between the boiler and valve shall be steel or extra heavy fittings of bronze, brass or malleable iron.  Replacement of pipe or fittings in the blow-off lines shall be installed in accordance with the ASME Code for new installations.

               

     

    Exceptions:

     

    1.            Low-pressure heating boilers bearing the ASME stamp that are trimmed by the manufacturer are exempt from the fittings material requirements.

     

    2.            Low-pressure heating boilers rated less than 100 horsepower (74.6 kW) are exempt from the fittings material requirements.

     

    1023.9.3 Extra heavy blow-off valves.  When the maximum allowable working pressure exceeds 100 pounds psi (689 kPa), each bottom blow-off pipe shall be fitted with two valves or a valve and cock, such valves and cocks to be of the extra heavy type.

     

    1023.9.4 Protection of blow-off pipe.  A bottom blow-off pipe, when exposed to direct furnace heat, shall be protected by fire-brick or other heat-resisting material, arranged so as to allow the pipe to be inspected.  An opening in the boiler setting for a blow-off pipe shall be arranged to provide for free expansion and contraction.

     

    1023.10 Feed-water connections.  The feed pipe of a steam boiler shall be provided with a check valve near the boiler and a valve or cock between the check valve and the boiler.  When two or more boilers are fed from a common source, there shall also be a globe valve on the branch to each boiler, between the check valves and the main feed pipe.  When a globe valve is used on a feed pipe, the inlet shall be under the disk from the valve.  In all cases where the safety valve is set above 25 pounds psi (172 kPa), there shall be a second means of feeding water against the maximum approved working pressure of the boiler.

     

    1023.11 Hydrostatic test.  When a hydrostatic test is applied, test pressure shall not exceed 1 ½ times the maximum allowable working pressure of the boiler.  During a hydrostatic test of a boiler, suitable provisions shall be made to attain the test pressure without using the compression screw of the safety valve spring.

     

    1023.12 Repairs and replacements.  Where repairs or replacements are made or fittings or appliances are renewed or attached to a boiler, they shall comply with the provisions of the ASME Code for new installations.

     

    1023.13 Conditions not covered by these rules.  Installation conditions of power boiler parts and equipment not specifically covered in Chapter 10 of the Mechanical Code shall be regulated as determined by the code official.

     

    Insert new Section 1024 in the Mechanical Code to read as follows:

     

    1024    EXISTING HEATING BOILER INSTALLATIONS

     

    1024.1 Maximum allowable working pressure.  The maximum allowable working pressure of heating boilers shall be determined as follows:

     

    1.         Riveted Heating Boilers.  The maximum allowable working pressures on the shell or drum of a riveted heating boiler shall be determined in accordance with Section 1022, except that in no case shall the maximum allowable working pressure of a steam boiler exceed 15 pounds psi (103 kPa).

     

    2.         Cast Iron Heating Boilers.  The maximum allowable working pressure of a boiler composed principally of cast iron shall not exceed 15 pounds psi (103 kPa), unless such boiler complies with all the requirements of the Mechanical Code for power boilers. The maximum allowable working pressure of a boiler having cast-iron shell or heads and steel or wrought-iron tubes shall not exceed 15 pounds psi (103 kPa).

     

    1024.1.1 Low pressure boiler.  A radiator in which steam pressure is generated at a pressure of 15 pounds psi (103 kPa) or less shall be considered a low pressure boiler.

     

    1024.1.2 Manufacturer’s specification and identification.  The maximum allowable working pressure shall in no case exceed the pressure indicated by the manufacturer’s identification stenciled or cast upon the boiler or upon a plate secured to it.  In the absence of a manufacturer’s identification stencil or plate, the maximum allowable working pressure shall not exceed that recommended in the manufacturer’s specification or catalog.

     

    1024.1.3 Safe operating pressure.  If, in the judgment of the code official or an insurance company inspector, a steam-heating boiler is not safe for operation at the pressure previously approved, the operating pressure shall be reduced to a pressure deemed safe by the code official or insurance company inspector, or proper repair shall be made, or the boiler shall be retired from service, as determined by the code official or insurance company inspector.

     

    1024.2 Safety valves.  Each steam-heating boiler shall be provided with one or more safety valves with a total area of not less than 1 square inch (645 mm2) for each 5 square feet (0.46 m2) of grate area or equivalent if grates are not used.  The steam-relieving capacity of the safety valve or valves on any boiler shall be sufficient to prevent the boiler pressure from rising to more than 5 pounds psi (34 kPa) above the maximum allowable working pressure of the boiler.

     

    1024.2.1 Capacity.  If there is any doubt as to the capacity of the safety valve, an accumulation test shall be run.  No safety valve shall be smaller than 3/4 inch (19 mm) in diameter nor larger than 4.5 inches (114 mm) in diameter.

     

    1024.2.2 Stop valve.  No stop valve of any type shall be located between a boiler and its safety valve, nor in the safety valve discharge pipe.

     

    1024.3 Parts and equipment.  Each steam-heating boiler shall be equipped with the following parts and equipment that shall meet the requirements of Sections 1024.3.1 through 1024.3.8, as applicable.

     

    1024.3.1 Steam pressure gauge.  Each steam-heating boiler shall have a steam pressure gauge connected to the steam space of the boiler itself or on steam pipe near the boiler.  The graduations of the steam gauge shall not have a range of less than 15 pounds psi (103 kPa) nor more than 30 psi (207 kPa).

     

    1024.3.2 Water gauge glass.  Each heating boiler shall have at least one water gauge glass with the lowest visible part above the heating surfaces in the primary combustion chamber.  When, in the judgment of the code official or an insurance company inspector, the heating surfaces above the low-water line may be damaged by contact with high temperature gases, the water gauges shall be raised until the lowest visible part of the glass gauge is above the testing surface.

     

    1024.3.3 Gauge cocks.  Each steam-heating boiler shall have two or more gauge cocks located within the visible length of the water gauge glass.

     

    Exception:  Steam-heating boilers provided with two water gauge glasses.

     

    1024.3.4 Steam stop valve.  Heating boilers that can be closed off from the heating system by closing a steam stop valve shall be equipped with a check valve in the condensate return line, between the boiler and the system.  Any part of a heating system that can be closed off from the remainder of the system by closing a steam stop valve, shall be provided with a check valve in the condensate return pipe from that part of the system.

     

    1024.3.5 Feed-water connections.  Feed-water connections shall be independent of any water gauge connections.  Where possible, feed-water connections shall be made to the condensate return pipe of the reservoir of the condensate return pump.  There shall be a check valve in the feed-water line, close to the boiler.

     

    1024.3.6 Low-water cut-off of mechanically fired boilers.  Each mechanically fired heating boiler shall be equipped with a low-water cut-off so located as to automatically cut off the fuel supply in case the water level falls below the top of the bottom nut of the water glass.  Each cut-off shall have a drain extended to within 6 inches (152 mm) of the floor.  When two or more mechanically fired heating boilers are connected to the same system, each boiler shall have independent low-water cut-offs, controls and gauges.

     

    1024.3.7 Low-water cut-off of electrically operated boilers.  If a low-water fuel cut-off device is electrically operated, it shall be so connected that it will fail-safe in the “cut-off” position both when the electric current is switched off and upon loss of electric power supply.

     

    1024.3.8 Condensate return pump.  Each condensate return pump shall be provided with an automatic water level control, set to maintain the water level between two gauge cocks.

     

    1024.4 Repairs or replacements.  When repairs or replacement of parts or piping are made, or fittings or appliances are replaced or attached to a heating boiler, the rules applying to new installations shall be followed as nearly as practicable.

     

    1024.4.1 Safety valve replacement.  When a safety valve is replaced the requirements of Section 1010 shall be met. No safety valve shall be smaller than 3/4 inch (19 mm) in diameter nor larger than 4.5 inches (114 mm) in diameter.

     

    Insert new Section 1025 in the Mechanical Code to read as follows:

     

    1025    EXISTING MINIATURE BOILER INSTALLATIONS

     

    1025.1 Maximum allowable working pressure.  The maximum allowable working pressure on the shell or drum of a miniature boiler shall be determined in accordance with the following equation:

     

    (TS x t x E) ÷ (R x FS) = Pm

    where:

     

    Pm

    =

    Maximum allowable working pressure (psi) (kPa)

     

    TS

    =

    Ultimate tensile strength of shell plates (psi) (kPa)

     

    t

    =

    Minimum thickness of shell plate in weakest course (inch) (mm)

     

    E a

    =

    Efficiency of longitudinal joint, per Section VIII, Division 1, Part UW, paragraph UW-12, “Joint Efficiencies” of the ASME Code

     

    E a

    =

    Efficiency for tube ligaments between openings as calculated in Section I, Part PG, paragraphs PG-52 and PG-53 of the ASME Code

     

    R

    =

    Inside radius of the weakest course of the shell or drum (inch) (mm)

     

    FS

    =

    Factor of safety required by Chapter 10 of the Mechanical Code

     

    a. Where there are both riveted joints and tube ligaments to consider, the lowest calculated efficiency, E, shall be used.

     

    1025.2 Parts and equipment.  Each miniature boiler shall be equipped with the following parts and equipment that shall meet the requirements of Sections 1025.2.1 through 1025.2.13, as applicable.

     

    1025.2.1 Feed pump.  Each miniature boiler operating at a pressure in excess of 25 pounds psi (172 kPa) shall be provided with at least one feed pump or other approved water-feeding device.

     

    Exception:  Where the steam generator is operated as a closed system with no extraction of steam, in lieu of a feeding device, a suitable connection or opening, not less than ½ inch (13 mm) nominal pipe size, shall be provided to fill the generator when cold.

     

    1025.2.2 Feed water and blow-off connections.  Each miniature boiler shall be fitted with feed water and blow-off connections that shall not be less than 1/2 inch (13 mm) iron pipe size, unless operated on a closed system.  The feed pipe shall be provided with a check valve and a stop valve.  The blow-off shall be fitted with a valve or cock and shall be in direct connection with the lowest water space practicable.  When the boiler is under pressure, feed water shall not be introduced through the openings or connections used for the column, the water gauge glass or gauge cocks.  All valves, pipe fittings and appliances shall be rated at a minimum of 125 pounds psi (862 kPa) standard pressure.

     

    1025.2.3 Water gauge glass and gauge cocks.  Each miniature boiler shall be equipped with a water gauge glass and one or more gauge cocks.  The lowest permissible water level shall be at a point one-third of the height of the shell.

     

    Exceptions:

     

    1.            Where the miniature boiler is equipped with internal furnace, the lowest permissible water level shall be not less than one-third of the length of the tube above the top of the furnace.

     

    2.            In the case of small generating units operated as a closed system, where there is insufficient space for the usual water gauge, water-level indicators of the glass bull’s eye type shall be allowed to be used.

     

    1025.2.4 Steam gauge.  Each miniature boiler shall be equipped with a steam gauge having its dial graduated to not less than 1 1/2 times the maximum allowable working pressure.  The gauge shall be connected to the steam space or to the steam connection to the water column by a brass or bronze composition siphon tube, or equivalent device that will keep the gauge tube filled with water.

     

    1025.2.5 Safety valve.  Each miniature boiler shall be equipped with a sealed, spring loaded, “pop” safety valve not less than 1/2 inch (13 mm) diameter connected directly to the boiler.  To ensure the safety valve is unrestricted, each valve shall have a substantial lifting device by which the valve disk can be lifted from its seat when the pressure in the boiler is at least 75 percent of full working pressure.  All safety valves shall be mounted with their spindles vertical and shall be accessible.

     

    1025.2.5.1 Safety valve identification.  The safety valve shall be plainly marked by the manufacturer with the following information:

     

    1.         Manufacturer name or identifying trademark;

     

    2.         The nominal diameter;

     

    3.         The steam pressure at which it is set to open; and

     

    4.         The capacity in pounds of steam per hour (kg/hr) and ASME Standard.

     

    1025.2.5.2 Minimum relieving capacity.  The minimum relieving capacity for the safety valve shall be determined on the basis of 3 pounds of steam per hour per square foot (lb/hr/ft2) (14.65 kg/hr/m2) of heating surface and shall be sufficient to discharge all the steam that can be generated by the miniature boiler without allowing the pressure to rise to more than 6 percent above the maximum allowable working pressure.

     

    1025.2.6 Standard stop valve.  Each steam line from a miniature boiler shall be provided with a 125 pounds psi (862 kPa) standard stop valve located as close to the boiler shell or drum as practicable.

     

    1025.2.7 Blow-off connections.  Each miniature boiler shall be provided with a blow-off connection that shall not be reduced in size and shall be extended to a safe point of discharge.  Whenever, in the judgment of the code official, a safe point of discharge is not available, a blow-down tank shall be provided.  The blow-off shall be fitted with a valve or cock and shall be connected directly to the lowest water space practicable.

     

    1025.2.8 Automatic low-water fuel cut-off.  Each miniature boiler mechanically-fired by any fuel other than gas shall be provided with an automatic low-water fuel cut-off, so located as to automatically cut off the fuel supply in case the water level falls below the bottom of the water glass.

     

    1025.2.9 Gas-fired boilers.  The burners of gas-fired miniature boilers shall conform to the listing requirements of the American Gas Association.  Such burners shall be equipped with an automatic fuel-regulating governor regulated by the steam pressure.  The governor shall be so constructed that, in the event of its failure, there can be no possibility of steam from the boiler entering the combustion chamber or the gas supply pipe.  A manual stop cock or throttle valve shall be provided, located in the inlet pipe ahead of the fuel-regulating governor.  Each gas-fired miniature boiler shall be equipped with a 4-inch (102 mm) vent or flue, extended to an approved location outside of the building or connected to a chimney, in accordance with the Fuel Gas Code.  Where the horizontal run of the vent is more than 10 feet (3048 mm), its size shall be increased to 6 inches (152 mm).

     

    1025.2.10 Replacement.  All miniature boiler replacements shall conform to the requirements of the Mechanical Code for new installations.

     

    1025.2.11 Retubed boiler inspections.  Each retubed miniature boiler shall be inspected and approved by the code official before the boiler is again put in service.  

     

    1025.2.12 Used boilers.  Each used miniature boiler brought into the District of Columbia shall be inspected and approved by the code official before being installed. Installation shall require a permit pursuant to Section 1001.3 and Section 105 of the Building Code.

     

    1025.2.13 Installation Permit.  Moving a miniature boiler and reinstalling it in the same or another building shall require a boiler installation permit.

     

    Insert new Section 1026 in the Mechanical Code to read as follows:

     

    1026    EXISTING UNFIRED PRESSURE VESSEL INSTALLATIONS

     

    1026.1 Maximum allowable internal working pressures.  The maximum allowable working pressure for a pressure vessel shall be determined in accordance with Sections 1026.1.1 or 1026.1.2.

     

    1026.1.1 Standard Pressure Vessels.  The maximum allowable working pressure for standard pressure vessels shall be determined in accordance with the applicable provisions of the ASME Code or the API-ASME Code under which they were constructed but shall not exceed the working pressure shown on the manufacturer’s nameplate stamping and data report.

     

    1026.1.2 Non-Standard Pressure Vessels.  The maximum allowable working pressure for a non-standard pressure vessel shall be determined by the calculated strength of its weakest course.  The computation shall be determined by the formula that follows, based on the thickness of the plate, the tensile strength of the plate, the efficiency of the longitudinal joint, the radius of the course and the factor of safety required by the Mechanical Code.

     

    (TS x t x E) ÷ (R x FS) = Pm

    where:

     

     

    Pm

    =

    Maximum allowable working pressure (psi) (kPa)

     

    TS

    =

    Ultimate tensile strength of shell plates (psi) (kPa)

     

    t

    =

    Lowest thickness of shell plate in weakest course (inch) (mm)

     

    E a

    =

    Efficiency of longitudinal joint depending upon construction

    Use values as follows:

    For riveted joints

    =

    calculated riveted efficiency

     

    For fusion welded joints:

    - Single “V” weld

    =

    50%

    - Double “V” weld

    =

    70%

    - Single lap weld

    =

    40%

    - Double lap weld

    =

    50%

    - Forge weld

    =

    80%

    - Brazed steel

    =

    80%

    - Brazed copper

    =

    90%

     

    E a

    =

    Efficiency for tube ligaments between openings as calculated in Section I, Part PG, paragraphs PG-52 and PG-53 of the ASME Code

     

    R

    =

    Inside radius of the weakest course of the shell (inch) (mm). If the thickness of the shell exceeds 10 percent of the inside radius, the outer radius shall be used

     

    FS

    =

    Factor of safety required by Chapter 10 of the Mechanical Code

     

    a. Where there are both riveted joints and tube ligaments to consider, the lowest calculated efficiency, E, shall be used.

     

    1026.2 Maximum allowable external working pressure.  The maximum allowable working pressure for cylindrical vessels subjected to external or collapsing pressure shall be determined by methods in Section I, Part PG, paragraph PG-28 of the ASME Code, except that the factor of safety used to calculate the working pressure shall be in accordance with the requirements of Section 1026.3.

     

    1026.3 Factor of safety.  The maximum permissible exterior working pressure for existing pressure vessels of other than lap-seam construction shall be calculated using a factor of safety of not less than 4.5.

     

    1026.3.1 Pressure vessels of lap-seam construction.  The maximum permissible exterior working pressure for existing pressure vessels with longitudinal lap joints shall be calculated based on the age of the vessel, using the factors of safety in Table 1026.3.1.

     

    TABLE 1026.3.1

    MINIMUM SAFETY FACTORS FOR EXISTING PRESSURE VESSELS WITH LONGITUDINAL LAP SEAMS

    Age of the Vessel

    Safety Factor

    0 to 10 years

    4

    10 to 20 years

    4.5

    20 to 25 years

    5

    25 to 30 years

    5.5

     

    1026.3.2 Age limit.  The age limit of a pressure vessel having a longitudinal lap joint and a working pressure over 50 pounds psi (345 kPa) shall be 30 years.

     

    1026.4 Stress limits.  In checking the tensile stresses in the walls of existing vessels, the effect of static head shall be considered in order to verify that such tensile stresses do not exceed the ultimate tensile strength of the material, divided by the applicable factor of safety required by the Mechanical Code.

     

    1026.5 Inspection of inaccessible parts.  Where, in the opinion of the code official, as the result of conditions disclosed at the time of an inspection, it is deemed necessary to remove interior or exterior lining, covering or brick work to expose certain parts of the vessel not visible at the time of regular inspection, the code official is authorized to require the removal of such material to permit proper inspection and to ascertain hidden conditions and remaining thicknesses.

     

    1026.6 Lap-seam cracks.  The shell or drum of a pressure vessel in which a lap seam crack is discovered along a longitudinal riveted joint shall be immediately discontinued from use. If the vessel is not more than 15 years of age, and when approved by the code official, the owner or user is authorized to make repairs consisting of the installation of a complete new course of the original shell thickness.  Patching shall be prohibited.  For the purpose of this section, a “lap-seam crack” is the typical crack frequently found in lap seams, extending parallel to the longitudinal joints and located either between or adjacent to rivet holes.

     

    1026.7 Tensile strength.  When the ultimate tensile strength of steel shell plates is not known, it shall be taken as 55,000 pounds psi (379 000 kPa) for equipment operating at temperatures not exceeding 700 °F (371 °C).

     

    1026.8 Crushing strength of mild steel.  The resistance to crushing of mild steel shall be taken at 95,000 pounds psi (655 000 kPa).

     

    1026.9 Rivets.  In computing the ultimate strength of rivets in shear, the values of the material shear strength contained in Table 1026.9, to be applied to the cross-sectional area of the rivet shank, shall be used.

     

    TABLE 1026.9 ULTIMATE STRENGTH OF RIVETS IN SHEAR

     

    Pounds per square inch

    (psi)

    Steel rivets in single shear

    44,000

    Steel rivets in double shear

    88,000

     

    1026.9.1 Cross-Sectional Area.  The cross-sectional area used in the computations shall be that of the rivet shank after driving.

     

    1026.9.2 Diameter.  When the diameter of the rivet holes in the longitudinal joints of a pressure vessel is not known, the diameter of the rivet after driving shall be ascertained from Table 1022.9.1 or by cutting out one rivet in the body of the joint, and the cross-sectional area of the rivet shall be calculated from the obtained diameter.

     

    1026.10 Safety appliances.  Each unfired pressure vessel shall be protected by such safety and relief valves and indicating and controlling devices as will ensure its safe operation.  These valves and devices shall be so constructed, located and installed that they cannot readily be rendered inoperative.  The relieving capacity of safety valves shall be such as to prevent a rise in pressure in the vessel to more than 10 percent above the maximum allowable working pressure, taking into account the effect of static head. Safety valve discharges shall be carried to a safe place of disposal.

     


    CHAPTER 11           Refrigeration

     

    1101    General

     

     

    1101    GENERAL

     

    Strike Section 1101.4 of the International Mechanical Code in its entirety and insert new Section 1101.4 in the Mechanical Code in its place to read as follows:

     

    1101.4 Water connection.  Water supply and discharge connections associated with refrigeration systems shall be made in accordance with the Mechanical Code and the Plumbing Code.

     

    1101.4.1 Condenser cooling water.  Water used for condenser cooling purposes without recirculation shall at all times be regulated by automatic controls designed to produce a minimum water temperature rise of 15 °F (8.3 °C), and to stop the flow of water when cooling is not required.

     

    1101.4.2 Approval of refrigeration systems.  No permit shall be issued for the installation of a refrigeration system that requires water from the public water mains at a peak demand flow in excess of 15 gpm (56.8 L/m), until an application to install such system, signed by the owner of the premises where the system is to be installed, is filed with and approved by the District of Columbia Water and Sewer Authority (DC Water).

     

    1101.4.3 Water for refrigeration.  Water supplied from the public water mains shall not be used for refrigeration purposes where DC Water has determined that such use might be detrimental to the proper service of consumers in the affected distribution area.

     


    CHAPTER 15           REFERENCED STANDARDS

     

    Strike ASME BPVC from Chapter 15 of the International Mechanical Code, and insert in the Mechanical Code, under subheading ASME, American Society of Mechanical Engineers in Chapter 15, in its place, a new standard reference, to read as follows:

     

    ASME

    American Society of Mechanical Engineers

    Three Park Avenue

    New York, NY 10016-5990

     

    Standard reference number

    Title

    Referenced in code section number

     

    BPVC 2010

     

     

    ASME Boiler & Pressure Vessel Code–10  Edition

     

    1001.2, 1001.5, 1004.1

     

    Insert in Chapter 15 of the Mechanical Code a new subheading NBBPVI and insert, under that subheading, a new standard reference to read as follows:

     

    NBBPVI

    National Board of Boiler and Pressure Vessel Inspectors

    1055 Crupper Avenue

    Columbus, Ohio 43229-1183

     

    Standard reference number

    Title

    Referenced in code section number

     

    ANSI/NBBPVI NB-23–2011

     

    National Board Inspection Code (NBIC)

     

    1001.2

     

    Strike standard reference NFPA 31-ll from Chapter 15 of the International Mechanical Code, under subheading NFPA, National Fire Protection Association, in its entirety and insert new standard reference NFPA 31-11 in Chapter 15 of the Mechanical Code in its place to read as follows:

     

    NFPA

    National Fire Protection Association

    1 Batterymarch Park

    Quincy, MA 02169-7471

     

    Standard reference number

    Title

    Referenced in code section number

     

    31-11

     

    Installation of Oil-burning Equipment

     

    801.2.1, 801.18.1, 801.18.2, 920.2,  1308.1

     

    Insert in Chapter 15 of the Mechanical Code a new subheading NSF, NSF International, and insert, under that subheading, a new standard reference to read as follows:

     

    NSF

    NSF International

    789 N. Dixboro

    Ann Arbor, MI 48105

     

    Standard reference number

    Title

    Referenced in code section number

     

    14–2008e

     

    Plastics Piping System Components and Related Materials

     

    301.4

     

    Strike standard reference UL 896 in Chapter 15 of the International Mechanical Code, under subheading UL, Underwriters Laboratories, Inc. without substitution.

     

    Strike standard reference numbers UL 1812-2009 and UL 1815-2009 from Chapter 15 of the International Mechanical Code, in their entirety, and insert in the Mechanical Code, Chapter 15, under subheading UL, Underwriters Laboratories, Inc. in their place two new standard references to read as follows:

     

    UL

    Underwriters Laboratories, Inc.

    333 Pfingsten Road

    Northbrook, IL 60062-2096

     

    Standard reference number

    Title

    Referenced in code section number

     

    1812–2009

     

    Standard for Ducted Heat Recovery Ventilators – with Revisions through June 2010

     

    510.8.1

     

    1815–2009

     

    Standard for Nonducted Heat Recovery

     

     510.8.1

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    All persons desiring to comment on these proposed regulations should submit comments in writing to Helder Gil, Legislative Affairs Specialist, Department of Consumer and Regulatory Affairs, 1100 Fourth Street, SW, Room 5164, Washington, D.C. 20024, or via e-mail at ConstructionCodes@dc.gov, not later than 5 p.m. on Friday, January 25, 2013.

     

    Comments should clearly specify which Subtitle, Chapter, and Section of the proposed District of Columbia Construction Codes they are related to.

     

    Persons with questions concerning this Notice of Proposed Rulemaking should call (202) 442-4400. Copies of the proposed rules can be obtained from the address listed above.  A copy fee of one dollar ($1.00) will be charged for each copy of the proposed rulemaking requested.

     

    Free copies of these proposed regulations are available on the DCRA website at http://dcra.dc.gov by going to the “About DCRA” tab, clicking on “News Room”, and then clicking on “Rulemaking”. Additionally, the DCRA website will list links to each of the ICC and NFPA 70 codes.